使用Python实现线性回归,字节跳动面试多久出结果

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

print(“y=x+1更加接近样本给出的值”)

else:

print(“y=3x-1更加接近样本给出的值”)

def updatekb(data, k, b, learning_rate):

x=data[0]

y=data[1]

n = len(x)

dk, db = 0, 0

for i in range(n):

dk += 2 / 10 * (k*x[i] + b - y[i]) * x[i]

db += 2 / 10 * (k * x[i] + b - y[i])

new_k = k - learning_rate * dk

new_b = b - learning_rate * db

return new_k, new_b

def learningcregression(data, k, b, r, h):

dk, db = k, b

n = len(x)

for i in range(n):

dk, db = updatekb(data, dk, db, r)

return dk, db

#入口函数

def getdata():

x, y = getdata()

return x, y

if name == “main”:

k, b = learningcregression(getdata, 2, 1, 0.001, 10000)

取步长为0.001

k = [3, 0]

b = [-1, 0]

ones = 0

while True:

dk, db = 0, 0

for i in range(0, 10):

dk += 2 / 10 * (k[0] * x[i] + b[0] - y[i]) * x[i]

db += 2 / 10 * (k[0] * x[i] + b[0] - y[i])

k[1] = k[0] - 0.001 * dk

b[1] = b[0] - 0.001 * db

if ones == 100000:

break

else:

k[0] = k[1]

b[0] = b[1]

ones += 1

print(“拟合回归方程的斜率k为:%.7f”%k[1])

print(“拟合回归方程的斜率k为:%.7f”%b[1])

print(ones)

print(“拟合回归方程为:%.7f * x + %.7f” % (k[1], b[1]))

x = np.array(x)

y = np.array(y)

Y = k[1] * x + b[1]

plt.scatter(x, y)

plt.plot(x, Y, ‘*-g’)

plt.show()

在这里插入图片描述

思考题(表格区域可拉长)

(1)试引入sklearn包,直接计算该线性方程。(注:选做)

(2)试将上述坐标点和线性方程的图像使用Python画入平面直角坐标系中。

在这里插入图片描述

(3)试思考当有2个及以上特征时,如何使用线性回归方法来实现拟合。(注:文字描述即可)
3)当特征值为两个的时候,则是一个二维平面(横纵坐标分别表示一个特征值)。当出现两个以上的特征值时,特征值越多,坐标的维数越多,那么模型建立起来就比较繁琐,而且多特征有时还会存在多重共线性问题,即相互之间具有关联关系,导致解空间不稳定,模型泛化能力弱,过多特征也会妨碍模型学习规律。因此,当特征值比较多时我们通常可以采用降维的方式减少维数,使模型简单准确,简单来说就是指可以用更少维度的特征替代更高维度的特征,同时保留有用的信息,把高维空间上的多个特征组合成少数几个无关的主成分,同时包含原数据中大部分的变异信息,简单的来说就是在二维坐标(x,y)内均匀分布在一条回归线上下,在三维坐标内(x,y,z)还是按照近似二维平面分布,第三个维度(z)对回归拟合的影响非常小,故可以删除这个特征向量(z),用二维(x,y)来反映原始数据,除此之外还有其他的方法进行降维,例如缺失值比率 、低方差滤波 、高相关滤波 、随机森林/组合树等
文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-EyGfVRsc-1713463420707)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值