数据分析之实例四:用户消费行为数据分析(二

本文深入探讨了用户购买周期的分布,揭示了用户生命周期的特点,并通过直方图展示了不同用户的消费频率。同时,进行了复购率和回购率的详细分析,为理解用户行为提供了关键洞察。
摘要由CSDN通过智能技术生成

用户的购买周期

#shift函数:将数据移动到一定的位置
data1 = pd.DataFrame({
    'a':[0,1,2,3,4,5],
    'b':[5,4,3,2,1,0]
})
data1.shift(axis=0)# shift()函数默认axis=0,整体向下一定一位
data1.shift(axis=1)#整体向右一定一位

#计算购买周期(购买日期的时间差)
order_diff=df.groupby(by='user_id').apply(lambda x:x['order_date']-x['order_date'].shift())
order_diff.describe()

 

count                         46089
mean     68 days 23:22:13.567662566
std      91 days 00:47:33.924168893
min                 0 days 00:00:00
25%                10 days 00:00:00
50%                31 days 00:00:00
75%                89 days 00:00:00
max               533 days 00:00:00
Name: order_date, dtype: object
#数据可视化,转化成直方图
(order_diff/np.timedelta64(1,'D')).hist(bins=20)#/np.timedelta64(1,'D'),日期转化成天
#bins影响柱子的宽度,每个柱子的宽度=(最大值=最小值)/bins
plt.xlabel('消费周期',color='b')
plt.ylabel('消费人数',color='r')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值