第二章三角函数
在处理微积分问题时,我们不可避免的会遇到三角函数。学会三角函数对于微积分是非常重要的。
2.1基本知识
学习三角函数我们需要先学习一些基本知识。
首先要学习的是弧度的概念。弧度是一种角的度量单位,用于测量角的大小。它是根据角所对的弧长与该弧所在圆的半径之比来定义的。
单位为1的单位圆的圆心角的弧度就是 2 π 2\pi 2π。因为圆的周长公式是 2 π r 2\pi r 2πr,而单位圆的半径为1,所以圆心角的弧度是 2 π 2 \pi 2π。
弧度和角度之间可以相互转换,有公式
弧度 = 角度 × π 180 弧度 = 角度 \times \frac{\pi}{180} 弧度=角度×180π
角度 = 弧度 × 180 π 角度 = 弧度 \times \frac{180}{\pi} 角度=弧度×π180
下表是我们常用的角度和弧度的转换
角度 | 弧度 |
---|---|
0° | 0 |
30° | π 6 \frac{\pi}{6} 6π |
45° | π 4 \frac{\pi}{4} 4π |
60° | π 3 \frac{\pi}{3} 3π |
90° | π 2 \frac{\pi}{2} 2π |
180° | π \pi π |
270° | 3 π 2 \frac{3\pi}{2} 23π |
360° | 2 π 2\pi 2π |
我们扩展了角的度量单位,现在来让我们从三角型中来学习三角函数。
知道如何从三角形中定义三角函数是非常重要的。让我们从直角三角形开始。
我们记除直角外的一角为θ,则三角函数的公式为
s i n ( θ ) = 对边 斜边 , c o s ( θ ) = 邻边 斜边 , t a n ( θ ) = 对边 邻边 sin(\theta)=\frac{对边}{斜边} ,cos(\theta)=\frac{邻边}{斜边},tan(\theta)=\frac{对边}{邻边} sin(θ)=斜边对边,cos(θ)=斜边邻边,tan(θ)=邻边对边
这三个是最常用的三角函数。有时我们也会用到其他三个函数,它们被定义为:
s e c ( θ ) = 1 c o s ( θ ) , c s c ( θ ) = 1 s i n ( θ ) , c o t ( θ ) = 1 t a n ( θ ) sec(\theta)=\frac{1}{cos(\theta)},csc(\theta)=\frac{1}{sin(\theta)},cot(\theta)=\frac{1}{tan(\theta)} sec(θ)=cos(θ)1,csc(θ)=sin(θ)1,cot(θ)=tan(θ)1
记住下表中的内容是很有必要的
0 | π 6 \frac{\pi}{6} 6π | π 4 \frac{\pi}{4} 4π | π 3 \frac{\pi}{3} 3π | π 2 \frac{\pi}{2} 2π | |
---|---|---|---|---|---|
sin | 0 | 1 2 \frac{1}{2} 21 | 1 2 \frac{1}{\sqrt{2}} 21 | 3 2 \frac{\sqrt{3}}{2} 23 | 1 |
cos | 1 | 3 2 \frac{\sqrt{3}}{2} 23 | 1 2 \frac{1}{\sqrt{2}} 21 | 1 2 \frac{1}{2} 21 | 0 |
tan | 0 | 1 3 \frac{1}{\sqrt{3}} 31 | 1 | 3 \sqrt{3} 3 | 无定义 |
虽然数学不是死记硬背,但是有些内容还是非常值得记忆的。
2.2 扩展三角函数
在上一节中,讨论了如何在直角三角形中定义三角函数,限制让我们扩展三角函数的定义域。
事实上我们可以取任意角的正弦和余弦,而不只是局限于 0 0 0~ π 2 \frac{\pi}{2} 2π当中。
当然需要注意的是,正切函数对不是对任意角都成立。如 t a n ( π 2 ) tan(\frac{\pi}{2}) tan(2π)就是无定义的。
我们先从 0 0 0~ 2 π 2\pi 2π之间的角开始。我们需要从坐标平面中来定义三角函数。
坐标轴将坐标平面分成了四个象限。分别称为第一象限、第二象限、第三象限、第四象限。我们可以看到象限标记的走向是逆时针。大家可能已经注意到了坐标轴上的数字了。我想大家已经猜出它们是什么了。它们表示的是标记表示的从原点出发射线与x正半轴的夹角的弧度。或者说是从原点出发射线在x轴正半轴逆时针转动的弧度。
如果顺时针转动则弧度是负的
让我们取某个角 θ \theta θ,并在坐标平面中画出来
这里要注意,这里是将射线标记为θ,而不是角本身。我们在射线θ上选取一点$(x,y)并从该点画一条垂线至x。
图片中标记出了三个量。该点的x坐标和y坐标,以及该点到原点的距离r。有了这三个点我们便可以定义如下的三角函数: