EasyCloud Intelligent Hardware Resource Scheduling Technical Documentation


EasyCloud Intelligent Hardware Resource Scheduling Technical Documentation


1. Document Overview

1.1 Purpose

This document details the technical implementation of the hardware resource scheduling system in EasyCloud, aiming to build an "efficient, stable, and intelligent" resource management framework. It supports core business scenarios such as cloud server leasing, multi-tenant content production, and cloud-edge-terminal collaboration, achieving ​​≥30% improvement in hardware resource utilization​​ and ​​≥20% reduction in service latency​​.

1.2 Scope

Covers scheduling for CPU, GPU, memory, network, and other hardware resources, with a focus on:

  • GPU fine-grained management (e.g., video memory pooling, multi-instance isolation)
  • Cloud-edge-terminal collaborative scheduling
  • Multi-tenant resource isolation

2. Core Technical Architecture

2.1 Overall Framework

Adopts a ​​"Perception-Decision-Execution-Feedback"​​ closed-loop architecture with four core modules:

  • ​Monitoring Layer​​: Real-time collection of hardware and business metrics for full-chain observability.
  • ​Decision Layer​​: Generates scheduling strategies using static rules and reinforcement learning algorithms.
  • ​Execution Layer​​: Implements resource allocation and task migration via virtualization and hardware interfaces.
  • ​Feedback Layer​​: Evaluates scheduling outcomes to dynamically optimize decision models.

3. Full-Chain Monitoring System

3.1 Monitoring Metrics
Monitoring DimensionCore MetricsThreshold Alerts (Examples)
​GPU Resources​Utilization (SM/Video Memory/Encoder), Temperature, Power Consumption, MIG Instance Status, NVLink BandwidthVideo Memory Utilization >90%, Temperature >85°C
​CPU & Memory​Utilization, Load Balancing (Per-Core Usage), Context Switching Frequency, Memory Fragmentation RateCPU Utilization >80% for 5+ minutes
​Network Resources​Cloud-Edge-Terminal Latency (RTT), Throughput, Packet Loss, SD-WAN QualityPacket Loss >5%, Latency >100ms
​Business Metrics​Task Priority (Real-Time/Offline), QoS (e.g., Rendering FPS ≥30, Inference Latency <150ms), Tenant QuotasRendering FPS <24, Tenant Overuse >10%
3.2 Toolchain Selection
  • ​Basic Monitoring​​: Prometheus + Grafana (real-time visualization, customizable dashboards).
  • ​GPU-Specific Monitoring​​: NVIDIA DCGM (Data Center GPU Manager) for video memory pooling and MIG instance tracking.
  • ​Distributed Tracing​​: Jaeger for cross-node (cloud-edge-terminal) latency bottleneck analysis.
  • ​Log Analysis​​: ELK Stack (Elasticsearch + Logstash + Kibana) for storing scheduling logs used in model optimization.

4. Hierarchical Scheduling Strategies

4.1 Static Scheduling: Rule-Based Allocation
4.1.1 Resource Quotas & Isolation
  • ​Tenant-Level Isolation​​: Uses Linux cgroups to restrict CPU/memory usage and NVIDIA MIG technology to split single GPUs (e.g., A100/H100) into independent instances (e.g., 2×10GB + 5×5GB).
  • ​Business-Level Quotas​​: Predefined resource templates (e.g., "Real-Time Rendering Template" binds 2×T4 GPUs + 64GB RAM; "Offline Training Template" binds 1×A100 + 256GB RAM).
4.1.2 Hardware Affinity Scheduling
  • Binds compute-intensive tasks (e.g., 3D rendering, AI training) to GPU cores and NVLink-connected multi-GPU nodes.
  • Binds I/O-intensive tasks (e.g., video streaming, log storage) to idle CPU cores to avoid context-switching overhead.
4.2 Dynamic Scheduling: Reinforcement Learning-Based Decisions
4.2.1 Model Design (Refer to EasyCloud RLAllocator)
  • ​State Input​​: Real-time hardware load (GPU Utilization 80%), business metrics (rendering latency 150ms), network conditions (bandwidth 10 Mbps).
  • ​Action Output​​: Resource adjustments (task migration, video memory expansion, MIG reassignment).
  • ​Reward Function​​:
    Reward = 0.6×Resource Utilization Improvement + 0.3×Latency Reduction - 0.1×Migration Overhead
    (Penalty coefficients double if latency thresholds are exceeded.)
4.2.2 Load Prediction & Warm-Up
  • Uses LSTM time-series models to predict demand (e.g., daily 19:00 cloud gaming peak) and pre-allocates edge-node GPU resources (e.g., T4 with 30% video memory reserved via NVIDIA vGPU).
  • Reduces GPU power consumption (e.g., A100 from 400W to 250W) during off-peak hours, saving ​​≥20% energy​​.
4.3 Cloud-Edge-Terminal Collaborative Scheduling
Node TypeSuitable TasksScheduling Strategy
Edge Nodes (T4)Low-Latency TasksPrioritize VR rendering, real-time video analysis (e.g., facial recognition) with T4 hardware decoding.
Cloud Nodes (A100)High-Compute TasksHandles large-scale training, complex rendering via NVSwitch-enabled 4TB video memory pooling (8×A100).
Collaboration RulesDynamic Task MigrationMigrates non-real-time tasks (e.g., model training) to the cloud when edge GPU utilization >90%.

5. Core Technical Implementation

5.1 GPU Resource Fine-Grained Management
5.1.1 Video Memory Pooling & Sharing
  • Leverages NVIDIA NVLink/NVSwitch to pool multi-GPU video memory into a unified address space (e.g., 4TB pool from 8×A100 GPUs) for cross-card dynamic allocation.
  • Reduces fragmentation to ​​<5%​​ using NVIDIA Memory Manager algorithms.
5.1.2 MIG Technology Application
  • Splits single A100/H100 GPUs into 1–7 independent MIG instances (each with dedicated cores, video memory, and bandwidth).
  • Example: Allocates 2×10GB instances to Tenant A and 1×20GB to Tenant B for isolated resource sharing.
5.2 Elastic Scaling Mechanism
  • ​Horizontal Scaling​​: Kubernetes HPA scales nodes when GPU utilization exceeds 80% for 5+ minutes (response time <30s).
  • ​Vertical Scaling​​: Supports GPU compute overcommitment (up to 120% short-term) with dynamic frequency scaling for stability (e.g., burst rendering tasks).

6. Fault Tolerance & High Availability

6.1 Automated Failover
  • ​Health Checks​​: Heartbeat detection every 10s; nodes are marked faulty after 3 consecutive timeouts.
  • ​Task Migration​​: Restores tasks from checkpoints (e.g., AI training progress) to backup nodes within ​​<1 minute​​.
  • ​Network Redundancy​​: Switches to backup paths (public internet) if primary edge network packet loss exceeds 5%.
6.2 Rate Limiting & Degradation
  • Rejects low-priority tasks (e.g., offline log analysis) during overload (>90% resource utilization).
  • Downgrades services (e.g., reduces rendering resolution to 1080p) in extreme scenarios (e.g., >50% GPU cluster failure).

7. Implementation & Testing Guide

7.1 Toolchain Checklist
ModuleRecommended Tools/FrameworksKey Functions
Scheduling FrameworkKubernetes + VolcanoContainer orchestration, GPU affinity
Monitoring SystemPrometheus + Grafana + NVIDIA DCGMFull-stack metrics collection & visualization
Reinforcement Learning EnginePyTorch + EasyCloud RL ModuleTraining/deploying scheduling decision models
Log AnalysisELK StackStoring/logging optimization analysis
7.2 Test Scenarios & Acceptance Criteria
Test ScenarioAcceptance Criteria
Multi-Tenant Isolation100% isolation between tenants; no cross-impact during failures.
Cloud-Edge Collaboration EfficiencyEdge-to-cloud task migration latency <500ms.
Resource Utilization Improvement≥30% GPU utilization uplift vs. static scheduling.
Fault Recovery Time<1 minute for node failures.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值