This document details the technical implementation of the hardware resource scheduling system in EasyCloud, aiming to build an "efficient, stable, and intelligent" resource management framework. It supports core business scenarios such as cloud server leasing, multi-tenant content production, and cloud-edge-terminal collaboration, achieving ≥30% improvement in hardware resource utilization and ≥20% reduction in service latency.
1.2 Scope
Covers scheduling for CPU, GPU, memory, network, and other hardware resources, with a focus on:
GPU fine-grained management (e.g., video memory pooling, multi-instance isolation)
Cloud-edge-terminal collaborative scheduling
Multi-tenant resource isolation
2. Core Technical Architecture
2.1 Overall Framework
Adopts a "Perception-Decision-Execution-Feedback" closed-loop architecture with four core modules:
Monitoring Layer: Real-time collection of hardware and business metrics for full-chain observability.
Decision Layer: Generates scheduling strategies using static rules and reinforcement learning algorithms.
Execution Layer: Implements resource allocation and task migration via virtualization and hardware interfaces.
Feedback Layer: Evaluates scheduling outcomes to dynamically optimize decision models.
GPU-Specific Monitoring: NVIDIA DCGM (Data Center GPU Manager) for video memory pooling and MIG instance tracking.
Distributed Tracing: Jaeger for cross-node (cloud-edge-terminal) latency bottleneck analysis.
Log Analysis: ELK Stack (Elasticsearch + Logstash + Kibana) for storing scheduling logs used in model optimization.
4. Hierarchical Scheduling Strategies
4.1 Static Scheduling: Rule-Based Allocation
4.1.1 Resource Quotas & Isolation
Tenant-Level Isolation: Uses Linux cgroups to restrict CPU/memory usage and NVIDIA MIG technology to split single GPUs (e.g., A100/H100) into independent instances (e.g., 2×10GB + 5×5GB).
Uses LSTM time-series models to predict demand (e.g., daily 19:00 cloud gaming peak) and pre-allocates edge-node GPU resources (e.g., T4 with 30% video memory reserved via NVIDIA vGPU).
Reduces GPU power consumption (e.g., A100 from 400W to 250W) during off-peak hours, saving ≥20% energy.
4.3 Cloud-Edge-Terminal Collaborative Scheduling
Node Type
Suitable Tasks
Scheduling Strategy
Edge Nodes (T4)
Low-Latency Tasks
Prioritize VR rendering, real-time video analysis (e.g., facial recognition) with T4 hardware decoding.
Cloud Nodes (A100)
High-Compute Tasks
Handles large-scale training, complex rendering via NVSwitch-enabled 4TB video memory pooling (8×A100).
Collaboration Rules
Dynamic Task Migration
Migrates non-real-time tasks (e.g., model training) to the cloud when edge GPU utilization >90%.
5. Core Technical Implementation
5.1 GPU Resource Fine-Grained Management
5.1.1 Video Memory Pooling & Sharing
Leverages NVIDIA NVLink/NVSwitch to pool multi-GPU video memory into a unified address space (e.g., 4TB pool from 8×A100 GPUs) for cross-card dynamic allocation.
Reduces fragmentation to <5% using NVIDIA Memory Manager algorithms.
5.1.2 MIG Technology Application
Splits single A100/H100 GPUs into 1–7 independent MIG instances (each with dedicated cores, video memory, and bandwidth).
Example: Allocates 2×10GB instances to Tenant A and 1×20GB to Tenant B for isolated resource sharing.
5.2 Elastic Scaling Mechanism
Horizontal Scaling: Kubernetes HPA scales nodes when GPU utilization exceeds 80% for 5+ minutes (response time <30s).
Vertical Scaling: Supports GPU compute overcommitment (up to 120% short-term) with dynamic frequency scaling for stability (e.g., burst rendering tasks).
6. Fault Tolerance & High Availability
6.1 Automated Failover
Health Checks: Heartbeat detection every 10s; nodes are marked faulty after 3 consecutive timeouts.
Task Migration: Restores tasks from checkpoints (e.g., AI training progress) to backup nodes within <1 minute.
Network Redundancy: Switches to backup paths (public internet) if primary edge network packet loss exceeds 5%.