BERT词向量

BERT是一种预训练语言模型,用于生成高质量的词和句子嵌入,适用于NLP任务如搜索扩展、语义搜索和下游模型的特征输入。它的上下文相关嵌入使得同一单词在不同情境中有不同表示,提高了模型对语义的理解和性能。
摘要由CSDN通过智能技术生成

BERT介绍      

        BERT是一种预训练语言表示的方法,用于创建NLP从业人员可以免费下载和使用的模型。你可以使用这些模型从文本数据中提取高质量的语言特征,也可以使用你自己的数据对这些模型进行微调,以完成特定的任务(分类、实体识别、问题回答等),从而生成最先进的预测。

使用BERT作用

使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。

那么我们可以用这些词和句子的嵌入向量做什么呢?

1.  这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。

        例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。

2. 或许更重要的是,这些向量被用作下游模型的高质量特征输入。

        NLP模型(如LSTMs或CNNs)需要以数字向量的形式输入,这通常意味着需要将词汇表和部分语音等特征转换为数字表示。在过去,单词被表示为惟一索引值(one-hot编码),或者更有用的是作为神经单词嵌入,其中词汇与固定长度的特征嵌入进行匹配,这些特征嵌入是由Word2Vec或Fasttext等模型产生的。与Word2Vec之类的模型相比,BERT提供了一个优势,因为尽管Word2Vec下的每个单词都有一个固定的表示,但是单词出现的上下文无关,BERT生成的单词表示是由单词周围的单词动态通知的

例如,给定两句话:

“The man was accused of robbing a bank.” “The man went fishing by the bank of the river.”

Word2Vec将在两个句子中为单词“bank”生成相同的单词嵌入,而在BERT中为“bank”生成不同的单词嵌入。除了捕获一词多义之类的明显差异外,上下文相关的单词embeddings还捕获其他形式的信息,这些信息可以产生更精确的特征表示,从而提高模型性能。
 

BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer模型的预训练语言表示模型,它在自然语言处理任务中取得了很大的成功。下面是BERT词向量模型的实现方法: 1. 数据预处理:首先,需要对原始文本数据进行预处理。这包括分词、构建词表、将文本转换为词索引序列等操作。 2. 构建输入:BERT模型的输入由两部分组成,即Token Embeddings和Segment Embeddings。Token Embeddings是将每个词转换为固定长度的向量表示,通常使用预训练的词向量进行初始化。Segment Embeddings用于区分不同句子之间的关系。 3. 构建模型BERT模型由多层Transformer编码器组成。每个编码器包含多头自注意力机制和前馈神经网络。通过堆叠多个编码器,可以捕捉不同层次的语义信息。 4. 预训练:使用大规模的无标签文本数据BERT模型进行预训练。预训练任务包括掩码语言建模和下一句预测。其中,掩码语言建模任务要求模型根据上下文预测被掩码的词,下一句预测任务要求模型判断两个句子是否相邻。 5. 微调:在特定的下游任务上,使用有标签的数据BERT模型进行微调。微调过程中,可以将BERT模型作为特征提取器,也可以在BERT模型的基础上添加额外的任务特定层。 6. 词向量表示:BERT模型词向量表示可以通过提取模型的最后一层隐藏状态得到。这些隐藏状态可以用于下游任务的输入表示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值