机电系统计算机控制——第二章课后习题(部分)

2-7-(3)

f^*(t)=\sum_{K=0}^{\infty}e^{aKT}sin\omega KT\delta (t-KT)

2-9-(2) 部分分式展开后查表可得

F(z)=\frac{z}{z-e^{-T}}-\frac{z}{z-e^{-2T}}

2-10-(2)由采样定理可得

\frac{1}{T}\geq 2\omega\\ T\leq \frac{1}{2\omega}=0.05

2-12-(4)查表得

F(z)=\frac{ze^{-aT}sin\omega T}{z^2-2ze^{-aT}cos\omega T+e^{-2aT}}

2-13-(4)留数法

F(z)=\frac{d}{ds}[\frac{1-e^{sT}}{s+1}\cdot \frac{z}{z-e^{sT}}]_{s=0}+[\frac{1-e^{sT}}{s^2}\cdot \frac{z}{z-e^{sT}}]_{s=1}\\\\ =\frac{Tz}{1-z}+\frac{z(1-e^{-T})}{z-e^{-T}}\\\\ =\frac{(1-T-e^{-T})z^2+(Te^{-T}+e^{-T}-1)z}{(z-1)(z-e^{-T})}

2-14-(4)

留数法

F(z)=\frac{d}{ds}[\frac{s+3}{s+1}\cdot \frac{z}{z-e^{sT}}]_{s=-2}+[\frac{s+3}{(s+2)^2}\cdot \frac{z}{z-e^{sT}}]_{s=-1}\\\\ =\frac{-2z^2+2ze^{-2T}-Tze^{-2T}}{(z-e^{-2T})^2}+\frac{2z}{z-e^{-T}}\\

部分分式法

F(s)=-\frac{1}{(s+2)^2}-\frac{2}{s+2}+\frac{2}{s+1}\\\\ F(z)=-\frac{Tze^{-2T}}{(z-e^{-2T})^2}-\frac{2z}{z-e^{-2T}}+\frac{2z}{z-e^{-T}}\\\\ =\frac{-2z^2+2ze^{-2T}-Tze^{-2T}}{(z-e^{-2T})^2}+\frac{2z}{z-e^{-T}}

2-15-(4)微分定理

F_1(z)=Z[e^{-5t}]=\frac{z}{z-e^{-5T}}\\\\ F_2(z)=Z[te^{-5t}]=-Tz\frac{dF_1(z)}{dz}=\frac{Tze^{-5T}}{(z-e^{-5T})^2}\\\\ F(z)=Z[t^2e^{-5t}]=-Tz\frac{dF_2(z)}{dz}=\frac{T^2z(z+e^{-5T})e^{-5T}}{(z-e^{-5T})^3}\\

2-16终值定理

f(\infty)=\lim\limits_{z \rightarrow 1}\frac{z-1}{z}F(z)=\frac{0.892z}{z^2-0.426z+0.208}=1.14

2-17初值定理

f(0)=\lim\limits_{z \rightarrow \infty}F(z)=1

2-18-(2)长除法

F(z)=\frac{z}{(z-2)(z-1)^2}=\frac{z^{-2}}{-2z^{-3}+5z^{-2}-4z^{-1}+1}\\\\ =z^{-2}+4z^{-3}+11z^{-4}+26z^{-5}+57z^{-6}...\\\\ f(KT)=\delta(K-2T)+4\delta(K-3T)+11\delta(K-4T)+26\delta(K-5T)+57\delta(K-6T)...

2-19-(4)

长除法

F(z)=0.5z^{-1}+0.75z^{-2}+0.875z^{-3}+0.9375z^{-4}...\\\\ f(KT)=\sum_{K=0}^{\infty}(1-0.5^{k})\delta(t-KT)

部分分式法

F(z)=\frac{z}{z-1}-\frac{z}{z-0.5}\\\\ f(t)=1(t)-0.5^k\\\\ f(KT)=\sum_{K=0}^{\infty}(1-0.5^{k})\delta(t-KT)\\

留数法

F(z)=\frac{0.5z}{(z-1)(z-0.5)}=[\frac{0.5z}{z-0.5}z^{k-1}]_{z=1}+[\frac{0.5z}{z-1}z^{k-1}]_{z=0.5}\\\\ =1-0.5^k\\\\ f(KT)=\sum_{K=0}^{\infty}(1-0.5^{k})\delta(t-KT)

2-20-(4)留数法

F(z)=\frac{z}{(z-8)^2(z-2)}\\\\ =[\frac{z}{(z-8)^2}z^{k-1}]_{z=2}+[\frac{z}{z-2}z^{k-1}]_{z=8}\\\\ =\frac{2^k}{36}+\frac{k \cdot 8^{k-1}}{6}-\frac{8^k}{36}\\\\ f(KT)=\sum_{K=0}^\infty \frac{1}{6}[\frac{2^k}{6}+k\cdot8^{k-1}-\frac{8^k}{6}]\delta(t-KT)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值