【论文笔记】Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and

声明

不定期更新自己精度论文,通俗易懂,初级小白也可以理解

涉及范围:深度学习方向,包括 CV、NLP、Data Fusion、Digital Twin

论文标题:Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation

论文链接:https://doi.org/10.1016/j.compbiomed.2020.104037

论文代码:

发表时间:2020年10月

数据集:http://medicalsegmentation.com /covid19/

创新点

1、提出了一种新的多任务深度学习模型,来分割、分类和图像重建任务

Abstract

本文提出了一种自动分类分割工具,用于帮助使用胸部 CT 成像筛查 COVID-19 肺炎。分割的病灶有助于评估肺炎的严重程度和对患者的随访。在这项工作中,我们提出了一种新的多任务深度学习模型来联合识别 COVID-19 患者并从胸部 CT 图像中分割 COVID-19 病变。

三个学习任务:分割、分类和重建是用不同的数据集联合执行的。我们的动机一方面是利用多个相关任务中包含的有用信息来提高分割和分类性能,另一方面是处理小数据的问题,因为每个任务可以有一个相对较小的数据集。我们的架构由一个用于分离特征表示的通用编码器和三个任务、两个解码器和一个分别用于重建、分割和分类的多层感知器组成。

使用包含 1369 名患者的数据集对所提出的模型进行评估并与其他图像分割技术进行比较,其中包括 449 名 COVID-19 患者、425 名正常患者、98 名肺癌患者和 397 名不同类型的病理患者。获得的结果表明,我们的方法的性能非常令人鼓舞,分割的骰子系数高于 0.88,分类的 ROC 曲线下面积高于 97%。

Method

基于 3 个任务的新 MTL 架构:

1)COVID 与正常与其他感染分类

2)COVID 病灶分割

3)图像重建

前两个任务是必不可少的,而添加第三个任务是为了增强提取的特征表示。

在这项工作中,作者选择共享来自不同任务之间的参数。作者为三个任务创建了一个通用编码器,它以 CT 扫描作为输入,然后将其输出用于通过第一个解码器重建图像,通过第二个解码器进行分割,以及通过多层感知器与其他感染分类图像。

详细结构如下:

---------------------------------------------------------------------------------------------------------------------------------

Experinments

实验目标:不同模型分割结果

--------------------------------------------------------------------------------------------------------------------------------实验目标:我们提出的模型与分类、分割任务的最新技术之间的定量比较。

实验结果: 效果最优

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Abstract: Gas metal arc welding (GMAW) is a widely used welding process in various industries. One of the significant challenges in GMAW is to achieve optimal welding parameters and minimize defects such as spatter and porosity. In this paper, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes and provide insights for process optimization. Introduction: Gas metal arc welding (GMAW) is a welding process that uses a consumable electrode and an external shielding gas to protect the weld pool from atmospheric contamination. During the GMAW process, the metal transfer mode affects the weld quality and productivity. Three types of metal transfer modes are commonly observed in GMAW: short-circuiting transfer (SCT), globular transfer (GT), and spray transfer (ST). The selection of the transfer mode depends on the welding parameters, such as the welding current, voltage, and wire feed speed. The metal transfer mode can be observed using high-speed imaging techniques, which capture the dynamic behavior of the molten metal during welding. The interpretation of these images requires expertise and is time-consuming. To address these issues, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Methodology: We collected a dataset of metal-transfer images using a high-speed camera during the GMAW process. The images were captured at a rate of 5000 frames per second, and the dataset includes 1000 images for each transfer mode. We split the dataset into training, validation, and testing sets, with a ratio of 70:15:15. We trained a convolutional neural network (CNN) to classify the metal-transfer mode from the images. We used the ResNet50 architecture with transfer learning, which is a widely used and effective approach for image classification tasks. The model was trained using the categorical cross-entropy loss function and the Adam optimizer. Results: We achieved an accuracy of 96.7% on the testing set using our deep-learning-based approach. Our approach can accurately detect and classify the different types of metal-transfer modes in GMAW processes. Furthermore, we used the Grad-CAM technique to visualize the important regions of the images that contributed to the classification decision. Conclusion: In this paper, we proposed a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes with high accuracy. The proposed approach can provide insights for process optimization and reduce the need for human expertise in interpreting high-speed images. Future work includes investigating the use of our approach in real-time monitoring of the GMAW process and exploring the application of our approach in other welding processes.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自γ星的赛亚人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值