【论文笔记】VideoGPT: Video Generation using VQ-VAE and Transformers

 

论文标题:VideoGPT: Video Generation using VQ-VAE and Transformers

论文代码:https://wilson1yan. github.io/videogpt/index.html.

论文链接:https://arxiv.org/abs/2104.10157

发表时间: 2021年9月

Abstract

作者提出了VideoGPT:一种概念上简单的架构,用于将基于似然的生成建模扩展到自然视频。VideoGPT使用VQ-VAE,通过使用3D卷积和轴向自注意力学习原始视频的下采样离散潜在表示。然后使用类似于GPT的简单架构来自回归地建模离散潜在表示,使用时空位置编码。

尽管在公式和训练方面非常简单,但作者设计的架构能够生成与视频GAN模型相竞争的样本,用于BAIR机器人数据集的视频生成,并从UCF-101和Tumbler GIF数据集(TGIF)生成高保真度的自然视频。

样本和代码可在https://wilson1yan. github.io/videogpt/index.html.上获得

创新点

1. VideoGPT是一种基于似然的生成模型,它使用了VQ-VAE和Transformer两种技术来生成高质量自然视频。这种方法在视频生成领域是比较新颖的。

2. VideoGPT使用了VQ-VAE来学习原始视频的下采样离散潜在表示,这种表示可以被看作是对原始视频进行了压缩和抽象化。这种方法可以有效地降低模型的复杂度,并提高模型的泛化能力。

3. VideoGPT使用了轴向自注意力来处理3D卷积产生的长距离依赖关系,这种方法可以有效地捕捉视频中的时空信息,并提高模型的生成效果。

4. 在实验部分,VideoGPT在多个数据集上都表现出色,包括BAIR Robot Pushing Dataset、UCF-101和Tumbler GIF Dataset等。这表明VideoGPT具有很好的泛化能力和适应性。

Method

先介绍一下VQ-VAE:

VQ-VAE是一种用于生成模型的神经网络架构,它可以将高维数据点压缩到一个离散的潜在空间中,并从中重构原始数据。

VQ-VAE的全称是Vector Quantized Variational Autoencoder,它结合了自编码器和变分自编码器的思想,并使用了向量量化技术来实现离散化。

具体来说,VQ-VAE包含两个主要部分:编码器和解码器。编码器将输入数据映射到一个连续的潜在空间中,然后通过向量量化将这个连续空间转换为一个离散的潜在空间。解码器则将这个离散潜在空间映射回原始数据空间,并重构原始数据。

VQ-VAE使用了一种叫做“代码本”的技术来实现向量量化。代码本是由一组固定大小的向量组成的集合,每个向量都代表着潜在空间中的一个离散点。当输入数据被映射到连续潜在空间时,VQ-VAE会找到最接近该点的代码本向量,并用该向量来代替该点。

这样就可以将连续潜在空间转换为离散潜在空间。它使用了向量量化技术来实现离散化,并在图像、音频等领域取得了很好的效果。

说白了,VQ-VAE就是一种向量量化变分自编码器,通过使用最近邻查找将数据离散化为嵌入码本中的向量,以获得高效的数据压缩和图像重构。

最近邻查找就是“代码本”

---------------------------------------------------------------------------------------------------------------------------------

VideoGPT的运行:

首先,VideoGPT的输入是原始视频数据,它通过3D卷积进行下采样,并被转换为离散潜在表示。这些离散潜在表示被送入Transformer模型进行自回归建模。

其次,在VQ-VAE阶段,原始视频数据通过3D卷积进行下采样,并被转换为离散潜在表示。这些离散潜在表示被送入Transformer模型进行自回归建模。

然后,在Transformer模型中,每个时间步的输入是前一个时间步生成的离散潜在表示和位置编码。Transformer模型会根据这些输入预测下一个时间步的离散潜在表示。

最后,最终输出是由VQ-VAE解码器将离散潜在表示转换为连续像素值序列得到的自然视频。

整个过程可以看作是将离散潜在变量转换为连续像素值序列的过程。最终,VideoGPT可以生成高质量、多样化、连续时间的自然视频,并且在各种数据集上都表现出色。

Experiments

实验目标:VideoGPT在UCF-101数据集上使用FVD和IS两个指标进行评估

实验结果:VideoGPT可以在复杂视频数据集上生成高保真度样本,并且与最先进的GAN模型相比具有竞争力。

后续作者还做了一些实验,包括:

1、不同训练策略对性能的影响

2、模型结构对性能的影响

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
分层VQ-VAE(Variational Autoencoder)是一种基变分自编码器的生成模型用于学习数据的潜在表示和多样化的结构。其原理下: 1. 编码器(Encoder)分层VQ-VAE包含多编码器,每个编码器将数据映射到潜在表示空间。个编码器可以看作是一个逐编码的过程,其中较低层编码器学习表示的全局特征较高层的编码则学习表示数据的部特征。 2 潜在表示空间(Latent):潜在表示空间是编码生成的数据的低维表示。通过将输入数据映射到潜在表示空,模型可以捕捉数据中的关键特征,并实现对新样本的生成。 3. 化器(Vector Quantizer):分层VQ-VAE使用量化器将连的潜在表示离散化为离散的代码本。这样做的好处是可以限制潜在表示的维度,并增加模型的稳定性。量化器将潜在表示映射到最接近的离散代码本中的向量。 4. 解码器(Decoder):解码器将离散的代码本向量映射回原始数据空间,从而实现对新样本的生成。解码器的目标是最大程度地重构输入数据,使得生成的样本与真实数据尽可能接近。 5. 损失函数(Loss Function):分层VQ-VAE使用重构损失和潜在表示损失作为训练过程中的目标函数。重构损失衡量了生成样本与真实数据之间的差异,潜在表示损失则衡量了离散代码本向量与潜在表示之间的差异。 通过编码器、量化器和解码器的组合,分层VQ-VAE可以学习数据的潜在表示并生成多样化的结构。该模型可以应用于多个领域,如图像生成、音频合成和异常检测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自γ星的赛亚人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值