实验设计第二讲 简单比较实验、方差分析、一元线性回归

本文详细探讨了比较实验(包括水平对比与前后对比)中的t检验方法,涉及单样本、双样本和配对样本的应用实例。此外,介绍了方差分析(ANOVA)及其在多因素情况下的应用,以及一元线性回归的基本原理与回归方程检验。文章最后对比了方差分析与回归分析的目的、前提和适用场景。
摘要由CSDN通过智能技术生成

一、比较实验与t检验

(一)比较实验的目的:水平对比

如何进行水平对比?举例:

①一个影响因素的水平比较研究一种新安眠药的疗效。服药状态就是实验因素,有安慰组、服药组两种水平。→双样本t检验。

②一个影响因素的前后比较研究一种改良技术的效果。技术应用状态就是实验因素,有改良前、改良后两种状态。→配对样本t检验。

(二)常用方法:t检验

1、t检验的使用:检验两个总体均值是否存在显著差异。适用于两个处理之间的水平对比。

2、t检验的原理t分布理论。根据小样本来估计呈正态分布方差未知的总体的均值。

3、t检验的原假设:两个总体均值无显著差异(相等)。

4、t检验的前提

①正态假定,样本取自正态分布;

②随机样本;

③方差齐性(比较两总体均值的时候)。

5、应用场景

单样本t检验

检验一个正态分布的总体的均值是否在满足零假设的值之内。

举例:检验一小时内某医院出生婴儿的体重与一般情况是否相符。此时样本量(<30)较小,原假设为该小样本均值等于一般情况下的体重均值。

双样本t检验(学生t检验、独立样本t检验)

零假设为两个正态分布的总体的均值是相同的。

举例:比较两种测量仪器测量金属样品时的精度是否存在差别,此时有一个自(分组)变量(测量仪器:A和B)与一个因变量(精度值),实验对象是金属样品。

配对样本t检验

检验同一统计量的两次测量值之间的差异是否为零。

举例:检验医疗的治疗效果。测量一位病人接受治疗前和治疗后的肿瘤尺寸大小。如果两组数据平行配对相减后的值可以在统计学意义上认为是0,则认为治疗是无效的,我们可以推定多数病人接受治疗后,肿瘤尺寸没有变化。

④检验一条回归线的斜率是否显著不为零

6、独立样本t检验与配对样本t检验的对比

①独立样本t检验将各实验水平对应下的实验处理组视为独立样本,互不干扰,并假设实验对象都是同质的。但是现实中实验对象自身往往也存在误差,这时我们的实验可能因为实验对象的干扰而增加不确定性。比如精度实验中,如果金属样品存在硬度差异,则会增大实验的误差。而独立样本t检验无法排除实验对象间硬度效应的影响;

②配对样本t检验的特点在平行匹配,匹配而成的两组在相同实验条件下进行实验。比如在精度实验中,如果将两种测量仪器配对,控制同一块金属样品作为相同的实验条件,再比较两个测量数据的差异,就能消除金属样品间硬度效应的影响,实验误差减小,精度更高。配对方法实际上类似于区组化设计;

③采取哪一种检验方法需要根据实验目的和样品特性来确定,独立样本t检验和配对样本t检验两种检验方法各有优劣。如果样品(实验对象)之间没有差异、分布均匀,就不必采用配对样本t检验的方法消除样品间的差异性,此时,还因为独立样本t检验的自由度更高,实验效果更好(老师说的)。因此需要综合比较分析才能确定更好地实验方案。

二、方差分析(ANOVA)

(一)基本介绍

1、方差分析的使用:用于两个及两个以上样本均数差别的显著性检验,即适用于多个处理之间的水平对比。

2、方差分析的原理:认为不同处理组的均数间的差别基本来源有两个:实验条件(组间差异+随机误差(组内差异。通过构造F统计量,分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素(体现在组间差异,往往是实验要探究、检验的因素)对研究结果影响力的大小。

3、方差分析的原假设:多个样本总体均值相等(连等式)。

(二)方差分析的分类:

1、单因素方差分析

用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。

举例:探究学历对工资收入的影响。第一步明确因变量是工资收入(定量变量),自变量是学历(定类变量)。原假设为学历对工资收入无影响。数据形式为每列是一个观测(从1到n),每行是一个水平(从1到a)。第二步剖析工资收入的方差,计算总离差平方和S_{T}、组间差平方和S_{A}、组内差平方和S_{E}。第三步比较工资收入的组间差平方和、组内差平方和所占的比例,推断学历是否给工资收入带来了显著影响。

 2、单因素方差分析的进一步分析

得到实验因素是否影响实验指标的结论后,我们还能通过进一步检验,看看实验因素不同水平对实验指标影响程度的差异,比如,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显著的等等。下面主要介绍多重比较实验

多重比较实验能够实现,对实验因素的各个水平下观测变量总体均值的逐对比较。

LSD方法:呈现内容会重复,需要经过整理。SPSS汇报结果中,p值的解释是两个水平之间的差异程度,如果p值显著,就说明这两个水平之间差异较大。还可以做一个散点图,横轴是水平分类,纵轴是各水平下的均值,差异较大的两个水平对应的散点纵向距离就远。

Duncan方法:呈现内容比LSD方法的更加精简。具体思想是将差异小的水平归为一层,将差异大的水平分开。SPSS汇报结果中,行标题是各水平,列标题是所分的层次如果每层中只有一个水平,则说明各水平两两之间都存在较大差异。如果某个层中有不止一个水平,就说明这些水平对实验指标的影响作用是差不多的,没有显著差异的。

3、多因素方差分析

用来研究两个及两个以上控制变量是否对观测变量产生显著影响。不仅能够分析多个实验因素对实验指标的独立影响,更能够分析多个实验因素的交互作用能否对实验指标的分布产生显著影响,进而最终找到利于实验指标的最优组合。

举例:分析不同品种、不同施肥量对农作物产量的影响时,实验指标是农作物产量,实验因素是品种和施肥量2个。实验目的是找到哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。

 三、一元线性回归

(一)基本了解

是用来研究相关关系即非确定关系的。只有一个自变量和一个因变量。通过建立一元回归方程,我们可以近似表达自变量和因变量的关系,从而达到控制和预测的目的。

一般步骤是①画散点图并观察点的分布,如果大致是线性关系,就可以建立线性模型。如果是非线性的,也可经过变换进行线性转化(双曲线倒数、幂函数、对数、指数、S型等);②做出正态性假定y=a+bx+\varepsilon ,\varepsilon \sim N(0,\sigma ^{2}),Y\sim N(a+bx,\sigma ^{2});③利用最小二乘法OLS估计回归系数;④得到最终回归方程。

(二)回归方程的检验

1、线性假设的显著性检验(t检验)

原假设:b=0。再构造t统计量并计算t值与临界值比较。

2、线性回归的方差分析(F检验)

原假设:b=0。再进行总离差平方和的分解,构造F统计量,得到方差分析表,将计算得F值与临界值比较。

四、方差分析与回归分析的对比

(一)目的:

①方差分析是通过检验各总体的均值是否相等,来判断定类变量(X)对定量变量(Y)是否有显著影响。

②回归分析是根据一组样本数据确定出变量之间的数学关系式,并对关系式的可信程度进行各种统计检验,找出变量在显著性方面的差异。

③两种方法都能得出自变量和因变量之间的关系。它们研究的是不是因果关系呢?其实,因果推断不依赖于统计模型,而取决于变量性质,并不能绝对地说方差分析/回归分析一定得到因果关系。

(二)前提:

①方差分析:a.正态假定;b.方差相等;c.数据随机且相对独立。

②回归分析:在相关分析的基础上,满足正态性、方差齐性、独立性。自变量(X)在重复实验下固定非随机,因变量(Y)随机。

(三)变量:

①方差分析:X是定类,Y是定量。

②回归分析:X是定类(哑变量情形下),Y是定量。或者X、Y都是定量(更一般的情形)。

③两种方法都要求X是两种及两种以上的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值