实验设计第六讲 均匀设计

一、正交设计与均匀设计的对比

1、正交设计的特点
①更适用于因素数目较多而因素水平不多的实验;

②为了保证整齐可比性,实验次数至少是因素水平数的平方。

2、均匀设计的特点

①用于多因素多水平的实验设计中具有很大的优越性;

②只有均匀分散性(保证选取的样本点具有代表性),没有整齐可比性(不能用直观分析法);

③实验次数一般是因素水平的数目,或者是因素水平数目的倍数,而不是水平数目的平方,因此当因素数目较多时实验次数也不多。

二、均匀设计表

1、均匀设计表的特点:

①分成加“✳”和不加“✳”两个类型。加“✳”的均匀设计表有更好的均匀性,应该优先使用。

②加“✳”的 n 表通常是将不加“✳”的 n+1 表去掉其最后一行而得到。

③有n行m列,每一列都是{1,2,...,n}的一个置换,每一行是{1,2,...,n}的一个子集

④当实验次数 n 是素数时,可以获得 n-1 列,当 n 不是素数时,列数总是小于 n-1 列,有时候我们会将不是素数的 n 加一来变成素数,从而可以安排更多的实验因素。

2、均匀设计表的构造:

 第一步,确定表的第1行。第1行由 {1,2,...,n} 之间与n互素(最大公因子是1)的整数构成。因此,均匀设计表的列数 s 完全是由 n 决定的。

第二步,确定表的其他行。表的其余行由第1行生成。对应单元格的数字就是第一行对应数字与列号的乘积,如果结果大于 n ,就是减去 n 之后的得数。

三、均匀设计表的使用表:

1、使用表的作用

①用来指导如何从设计表中选用适当的列,以及由这些列所组成的实验方案的均匀度。因此在进行均匀设计的时候,实验因素不能自由放置

②最后1列D刻画均匀度,D越小代表均匀度越好

四、均匀设计结果的分析

往往需要建立回归方程,自变量的形式可以多种(倒数、乘积、平方...),每个自变量的系数要显著,方程的拟合优度最好在85%以上。回归系数的含义可以解释。

根据实验指标的特性(望大特性、望小特性、望目特性),选取自变量合适的取值,与实验结果进行比对。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值