基于keras框架的MobileNetV3深度学习神经网络花卉/花朵分类识别系统源码

 第一步:准备数据

12种花卉数据:向日葵, 梨花, 水仙, 牡丹, 玉兰花, 玫瑰, 睡莲, 美人蕉, 荷花, 菊花, 郁金香, 鸡蛋花,总共有7017张图片,每个文件夹单独放一种花

第二步:搭建模型

本文选择MobileNetV3Small,其网络结构如下:

 由于是十二分类问题,直接套用网络肯定是不行,因此会在全连接部分做手脚,参考代码如下:

    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dense(256)(x)
    x = Activation('relu')(x)
    x = Dense(64)(x)
    x = Activation('relu')(x)
    x = Dense(class_num)(x)
    predictions = Activation('softmax')(x)

    # for layer in base_model.layers:
    #     layer.trainable = True

    model = Model(inputs=base_model.input, outputs=predictions)
    return model

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)MobileNetV3Small可以从头训练或者利用预训练模型进行训练:

    w = 1
    if w:
        base_model = MobileNetV3Small(weights='imagenet', include_top=False, input_shape=(width, height, 3))
    else:
        base_model = MobileNetV3Small(weights=None, include_top=False, input_shape=(width, height, 3))

第四步:统计正确率

 正确率高达94.5%

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码,主要使用方法可以参考里面的“文档说明_必看.docx”

 

代码的下载路径(新窗口打开链接)基于keras框架的MobileNetV3神经网络花卉/花朵分类识别系统源码

有问题可以私信或者留言,有问必答

### 基于深度学习花卉识别系统 构建一个基于深度学习花卉识别系统通常涉及多个组件,包括数据预处理、模型选择、训练过程以及评估方法。对于此类应用,卷积神经网络 (CNN) 是一种非常有效的架构,因为 CNN 对图像中的局部特征具有良好的捕捉能力。 #### 数据集准备 为了开发和测试花卉识别系统,可以使用公开的数据集如 Oxford Flowers 102 或者 TensorFlow 提供的相关数据集。这些数据集中包含了多种不同种类的花朵图片,适合用于分类任务的学习与验证[^1]。 #### 模型设计 采用预训练模型(例如 VGG16, ResNet 等),通过迁移学习的方式调整最后一层以适应特定数量类别的输出是一个常见做法。这不仅减少了计算资源的需求,而且能够利用已有的大规模图像库来提高泛化性能。 ```python from tensorflow.keras.applications import VGG16 from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.models import Model base_model = VGG16(weights='imagenet', include_top=False) x = base_model.output x = Flatten()(x) predictions = Dense(num_classes, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = False ``` #### 训练流程 设置好损失函数(如 categorical_crossentropy)、优化器(Adam optimizer)之后就可以开始迭代训练了。考虑到过拟合的风险,在训练过程中加入正则项或是早停机制也是必要的措施之一。 ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_data, epochs=num_epochs, validation_data=val_data, callbacks=[early_stopping]) ``` #### 部署上线 完成上述步骤并获得满意的精度后,则可考虑如何部署该模型到实际环境中去工作。Flask API 或 Django REST framework 可以为用户提供接口服务;而 Docker 容器技术有助于简化环境配置问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值