CCGAN 简介与代码实战

1.介绍
    CCGAN的全称是“Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks”,中文翻译是“基于上下文条件以及半监督学习的生成对抗网”, 其中半监督的含义可参考我的一篇博客SGAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客,而上下文关系,在图片中,指代的是像素点之间关系。

2.模型结构
    整个结构框架还是很明朗的,我就不多啰嗦了。但要注意一点,在这个网络中,输入 的图片有两部分,第一部分为被mask处理过的图片(比如一个区域设置为0)  第二部分为低分辨图片(第二部可选择不要,当然生成图片的效果就会变差)。

3.模型特点

      这个模型对于gan的发展,并没有实质性的贡献,看到网络之后,我们可以很容易想到一个应用:修复内容缺失的图片

 4.代码实现keras

    注意:此代码中,并没有网络结构中的第二部分低分辨图片

class CCGAN():
    def __init__(self):
        self.img_rows = 32
        self.img_cols = 32
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.mask_height = 10
        self.mask_width = 10
        self.num_classes = 10
 
        # Number of filters in first layer of generator and discriminator
        self.gf = 32
        self.df = 32
 
        optimizer = Adam(0.0002, 0.5)
 
        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss=['mse', 'categorical_crossentropy'],
            loss_weights=[0.5, 0.5],
            optimizer=optimizer,
            metrics=['accuracy'])
 
        # Build the generator
        self.generator = self.build_generator()
 
        # The generator takes noise as input and generates imgs
        masked_img = Input(shape=self.img_shape)
        gen_img = self.generator(masked_img)
 
        # For the combined model we will only train the generator
        self.discriminator.trainable = False
 
        # The valid takes generated images as input and determines validity
        valid, _ = self.discriminator(gen_img)
 
        # The combined model  (stacked generator and discriminator)
        # Trains the generator to fool the discriminator
        self.combined = Model(masked_img , valid)
        self.combined.compile(loss=['mse'],
            optimizer=optimizer)
 
 
    def build_generator(self):
        """U-Net Generator"""
 
        def conv2d(layer_input, filters, f_size=4, bn=True):
            """Layers used during downsampling"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if bn:
                d = BatchNormalization(momentum=0.8)(d)
            return d
 
        def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
            """Layers used during upsampling"""
            u = UpSampling2D(size=2)(layer_input)
            u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
            if dropout_rate:
                u = Dropout(dropout_rate)(u)
            u = BatchNormalization(momentum=0.8)(u)
            u = Concatenate()([u, skip_input])
            return u
 
        img = Input(shape=self.img_shape)
 
        # Downsampling
        d1 = conv2d(img, self.gf, bn=False)
        d2 = conv2d(d1, self.gf*2)
        d3 = conv2d(d2, self.gf*4)
        d4 = conv2d(d3, self.gf*8)
 
        # Upsampling
        u1 = deconv2d(d4, d3, self.gf*4)
        u2 = deconv2d(u1, d2, self.gf*2)
        u3 = deconv2d(u2, d1, self.gf)
 
        u4 = UpSampling2D(size=2)(u3)
        output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4)
 
        return Model(img, output_img)
 
    def build_discriminator(self):
 
        img = Input(shape=self.img_shape)
 
        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
 
        model.summary()
 
        img = Input(shape=self.img_shape)
        features = model(img)
 
        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)
 
        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)
 
        return Model(img, [validity, label])
 
    def mask_randomly(self, imgs):
        y1 = np.random.randint(0, self.img_rows - self.mask_height, imgs.shape[0])
        y2 = y1 + self.mask_height
        x1 = np.random.randint(0, self.img_rows - self.mask_width, imgs.shape[0])
        x2 = x1 + self.mask_width
 
        masked_imgs = np.empty_like(imgs)
        for i, img in enumerate(imgs):
            masked_img = img.copy()
            _y1, _y2, _x1, _x2 = y1[i], y2[i], x1[i], x2[i],
            masked_img[_y1:_y2, _x1:_x2, :] = 0
            masked_imgs[i] = masked_img
 
        return masked_imgs
 
 
    def train(self, epochs, batch_size=128, sample_interval=50):
 
        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()
 
        # Rescale MNIST to 32x32
        X_train = np.array([scipy.misc.imresize(x, [self.img_rows, self.img_cols]) for x in X_train])
 
        # Rescale -1 to 1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)
 
        # Adversarial ground truths
        valid = np.ones((batch_size, 4, 4, 1))
        fake = np.zeros((batch_size, 4, 4, 1))
 
        for epoch in range(epochs):
 
            # ---------------------
            #  Train Discriminator
            # ---------------------
 
            # Sample half batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]
            labels = y_train[idx]
 
            masked_imgs = self.mask_randomly(imgs)
 
            # Generate a half batch of new images
            gen_imgs = self.generator.predict(masked_imgs)
 
            # One-hot encoding of labels
            labels = to_categorical(labels, num_classes=self.num_classes+1)
            fake_labels = to_categorical(np.full((batch_size, 1), self.num_classes), num_classes=self.num_classes+1)
 
            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, [valid, labels])
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, fake_labels])
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
            # ---------------------
            #  Train Generator
            # ---------------------
 
            # Train the generator
            g_loss = self.combined.train_on_batch(masked_imgs, valid)
 
            # Plot the progress
            print ("%d [D loss: %f, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[4], g_loss))
 
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                # Select a random half batch of images
                idx = np.random.randint(0, X_train.shape[0], 6)
                imgs = X_train[idx]
                self.sample_images(epoch, imgs)
                self.save_model()
 
    def sample_images(self, epoch, imgs):
        r, c = 3, 6
 
        masked_imgs = self.mask_randomly(imgs)
        gen_imgs = self.generator.predict(masked_imgs)
 
        imgs = (imgs + 1.0) * 0.5
        masked_imgs = (masked_imgs + 1.0) * 0.5
        gen_imgs = (gen_imgs + 1.0) * 0.5
 
        gen_imgs = np.where(gen_imgs < 0, 0, gen_imgs)
 
        fig, axs = plt.subplots(r, c)
        for i in range(c):
            axs[0,i].imshow(imgs[i, :, :, 0], cmap='gray')
            axs[0,i].axis('off')
            axs[1,i].imshow(masked_imgs[i, :, :, 0], cmap='gray')
            axs[1,i].axis('off')
            axs[2,i].imshow(gen_imgs[i, :, :, 0], cmap='gray')
            axs[2,i].axis('off')
        fig.savefig("images/%d.png" % epoch)
        plt.close()

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值