基于keras框架的MobileNetV2深度学习神经网络蔬菜分类识别系统源码

本文介绍了如何使用MobileNetV3Small构建一个九分类的蔬菜图像识别模型,包括数据预处理、模型结构设计、训练过程(包括使用预训练权重和交叉熵损失)、以及搭建GUI界面。最终模型达到了93.2%的正确率。
摘要由CSDN通过智能技术生成

 第一步:准备数据

9种蔬菜数据:'土豆', '大白菜', '洋葱', '胡萝卜', '茄子', '西红柿', '辣椒', '韭菜', '黄瓜',总共有5611张图片,每个文件夹单独放一种花

第二步:搭建模型

本文选择MobileNetV3Small,其网络结构如下:

 由于是九分类问题,直接套用网络肯定是不行,因此会在全连接部分做手脚,参考代码如下:

    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dense(64)(x)
    x = Activation('relu')(x)
    x = Dense(16)(x)
    x = Activation('relu')(x)
    x = Dense(class_num)(x)
    predictions = Activation('softmax')(x)

    # for layer in base_model.layers:
    #     layer.trainable = True

    model = Model(inputs=base_model.input, outputs=predictions)
    return model

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)MobileNetV2可以从头训练或者利用预训练模型进行训练:

    w = 1
    if w:
        base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(width, height, 3))
    else:
        base_model = MobileNetV2(weights=None, include_top=False, input_shape=(width, height, 3))

第四步:统计正确率

 正确率高达93.2%

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码,主要使用方法可以参考里面的“文档说明_必看.docx”

 

代码的下载路径(新窗口打开链接)基于keras框架的MobileNetV2深度学习神经网络蔬菜分类识别系统源码

有问题可以私信或者留言,有问必答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值