第一步:准备数据
9种蔬菜数据:'土豆', '大白菜', '洋葱', '胡萝卜', '茄子', '西红柿', '辣椒', '韭菜', '黄瓜',总共有5611张图片,每个文件夹单独放一种花
第二步:搭建模型
本文选择MobileNetV3Small,其网络结构如下:
由于是九分类问题,直接套用网络肯定是不行,因此会在全连接部分做手脚,参考代码如下:
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(64)(x)
x = Activation('relu')(x)
x = Dense(16)(x)
x = Activation('relu')(x)
x = Dense(class_num)(x)
predictions = Activation('softmax')(x)
# for layer in base_model.layers:
# layer.trainable = True
model = Model(inputs=base_model.input, outputs=predictions)
return model
第三步:训练代码
1)损失函数为:交叉熵损失函数
2)MobileNetV2可以从头训练或者利用预训练模型进行训练:
w = 1
if w:
base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(width, height, 3))
else:
base_model = MobileNetV2(weights=None, include_top=False, input_shape=(width, height, 3))
第四步:统计正确率
正确率高达93.2%
第五步:搭建GUI界面
第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码,主要使用方法可以参考里面的“文档说明_必看.docx”
代码的下载路径(新窗口打开链接):基于keras框架的MobileNetV2深度学习神经网络蔬菜分类识别系统源码
有问题可以私信或者留言,有问必答