GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN(如 StyleGAN2 )中封装的丰富和多样的先验信息,来修复低质量、模糊、噪声或者损坏的人脸图像。GFPGAN 算法的主要贡献有以下几点:
- 提出生成式面部先验(GFP),可以从预训练的面部 GAN 中提取高质量的面部特征,并通过空间特征变换层(SFT)将其融合到面部恢复过程中,从而提高了面部图像的真实性和保真度。
- 设计通道分割空间特征变换层(CS-SFT),可以根据输入特征对GAN特征进行部分调制,从而在纹理的真实性和保真度之间达到一个良好的平衡。
- 引入面部成分损失和身份保留损失,可以分别增强感知显著的面部成分(如眼睛、鼻子、嘴巴等)和保留面部的身份信息,从而提高了面部图像的视觉质量和语义一致性。
Paper: Towards Real-World Blind Face Restoration with Generative Facial Prior
有些模糊的真实图像,需要高清修复细节,同时,重点关注于人脸区域,保持人物属性不变。
1. 图像放大
图像放大4倍,扩充细节,可选 4x-UltraSharp
算法 (快速) 或 StableSR
算法 (高质量),参考 超分辨率插件 StableSR v2 (768x768) 配置与使用 。
1. Extra 4x-UltraSharp
SD Tab 选择 后期处理 (Extra)
, 放大算法使用 4x-UltraSharp
,图像放大 4倍
,配置如下:
放大效果如下,重点观察脸部细节:
2. StableSR
StableSR
算法的整体效果和细节,均优于4x-UltraSharp
算法,缺点是速度较慢。
使用 StableSR
放大算法脚本,同样放大 4 倍
,启用 Tiled Diffusion
与 Tiled VAE
,效果如下:
整体的对比效果,如下:
2. 脸部细节
修复完全身之后,再使用 后期处理 (Extra)
的 GFPGAN
功能,修复脸部细节。
建议提前下载 GFPGAN 的 3 个模型,即 detection_Resnet50_Final.pth
、parsing_parsenet.pth
、GFPGANv1.4.pth
:
https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
# models/GFPGAN/detection_Resnet50_Final.pth
https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
# models/GFPGAN/parsing_parsenet.pth
https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# models/GFPGAN/GFPGANv1.4.pth
cd models/GFPGAN/
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
wget https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
注意:GFPGAN 不会修改面部细节,只提供放大功能,而CodeFormer 则会修改面部细节。
GFPGAN 和 CodeFormer 的配置如下:
- GFPGAN的可见程度设置为 1.0,更高权重。
- CodeFormer可见程度设置为 0.2,权重设置为 0.8 (反向)
即
Extra 4x-UltraSharp
的 GFPGAN
脸部修复,效果如下:
Stable SR
与 Extra 4x-UltraSharp
的 GFPGAN
脸部修复,明显Stable SR
优于 Extra 4x-UltraSharp
,效果如下:
最终修复效果,即 StableSR
+ GFPGAN
:
参考:田曦薇的照片
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
