训练一个属于自己的赛博猫娘(AI进阶篇:Deepseek本地部署)

不知道有多少小伙伴尝试了本地部署的Deepseek,我自己尝试了几次后觉得还行,当然我还是推荐官方版本也就是手机端可以用的。

毕竟本地部署的是蒸馏过的,官方版本的是pro max,我们本地部署的是pro或者mini版本。

在上篇笔记末尾有提到不同的显卡版本有推荐的模型,AI的思考回答速度一定程度上取决于显存和内存。

一些小伙伴可能还在观望50系显卡,所以我这里放一个镜像站的地址提供给大家下载其他模型。

img
这份完整版的DeepSeek入门资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

在这里大家可以根据自己的显存大小搜索适合自己的模型进行下载

  • 没有GPU:1.5B Q8推理 或者 8B Q4推理
  • 4G GPU:8B Q4推理
  • 8G GPU:32B Q4推理 或者 8B Q4推理
  • 16G GPU:32B Q4推理 或者 32B Q8推理
  • 24G GPU: 32B Q8推理 或者 70B Q2推理

下载的方法也很简单,例如我要找的是32B的模型,直接在网站的搜索框中搜索:Deepseek R1 32B GGUF

img

这个GGUF得带上,这样搜索出来的才是能一键部署的模型。

img

这里面的模型都是从Huggingface上镜像来的,例如DeepSeek-R1-Distill-Qwen-32B-GGUF

img

选择Files and versions可以看到有很多模型,这图字可能有点小,这里面的模型顺序从上到下按照模型大小排序的,越大模型效果越好。

例如我的空间还很大,显存也足够,那我直接选择最下面的32B Q8,点击最右侧就可以下载了。

img

把下载好的模型放在我们上一篇文章说的文件夹中:

img

这是我们上篇笔记中配置好的环境

如果有小伙伴是先看到这篇笔记,没看上一篇笔记的话也能放。

img

如果小伙伴从官方渠道或者其他地方下载了的话,查看这个路径:

本地磁盘C→用户→本地用户名(我的电脑名是willi)→.Imstudio→models

如果这个路径中打开有类似我的这个文件夹的话,那就将模型放进这个文件夹中并和我一样以文件名新建一个文件夹

img

在nanthmath-bilibili这个文件夹里面以DeepSeek-R1-Distill-Qwen-32B-GGUF为名字创建文件夹,这个文件夹里面都是32B的模型。

当然,如果没有类似nanthmath-bilibili这样的文件夹的话,直接新建一个即可(随便新建了个文件夹名为Kongbai),命名不要有中文就行以防后续调用出啥问题。

img

然后再新建的文件夹(Kongbai)里面再重复上面这个蓝色字体的步骤。

模型一定要放在Models的下两层文件夹中:Models→文件夹(模型提供者名称)→文件夹(模型名称)→模型本身

更改模型目录

如果有些小伙伴C盘(模型目录默认位置)不够的话,可以将模型放置到D或者F盘。

这里打开LM studio,如果有没安装的小伙伴可以看看上一篇笔记。

在这里先点击主界面右下角的齿轮,然后将语言改为中文

img

在界面最左下角有三个选项:User、Power User、Developer

img

在选用Power User或者Developer之后回到页面最左上方,点击第三个红色的选项:

img

这里是我们之前所下载安装的一系列语言模型,在这里可以进行模型目录的更改。

点击模型目录最右侧的三个小点:

img

img

例如我的模型放置在了其他的位置(也是需要models的下两层文件夹),这里我就可以更改文件夹(选择的不是最后一个文件夹),然后选择完后再点击第三个的刷新即可。

img

选择到这个models下层文件夹即可,就不用再点进去了。

如果显示模型加载Failed的话,可以试试把models以外的文件夹保留在.Imstudio下,只把model放在想放的目录。

模型参数设置:

一般在模型成功导入好之后,点击LM studio最上方的搜索框就可以看到已经导入的模型。

img

选择任意一个模型之后会弹出有很多参数的一个页面

img

这里一个一个参数讲解:

  • 上下文长度Context Length:指模型最多能从多少信息中推理,这里默认4096的意思是AI最多能对4096个字符进行推理,更多的就没法记住了。如果是要让AI写小说的话,这里参数可以给到2万左右。
  • GPU卸载Offload:GPU将会承担多少层中多少层的运算,我这里50/64的意思就是承担64层中50层的运算。
  • CPU Thread Pool Size:一般指会用多少CPU的线程,一般情况下会拉满,这里的拉满不是指手动调到最大值,而是自己CPU线程数的最大值,这里推荐默认或者百度查一下看看自己的CPU。
  • 评估批处理大小Evaluation Batch Size:一般默认512,如果GPU比较好的可以拉到1024
  • 剩下的参数不建议去调整,维持默认即可

在调整好之后点击右下角的加载模型即可,在模型加载完之后可以打开任务管理器看看有没有吃满显存:

img

一般情况下内存吃满代表着调用多,性能会更好,小伙伴可以根据自己的显卡选择稍微拉高一点参数。

img

预设Preset

有的时候在和AI聊天的过程中会给AI一点设定啥的,例如要AI以一个严谨的数学家和逻辑学家的语气回答问题。而这里的设定就可以进行保留,这样下次有一些数学上的问题就可以调用这个预设,让AI以严谨的方式回答问题。

img

img

在系统提示框System Prompt中输入想要对AI进行的设置,例如我这样:

img

甚至可以设置所有的回答思考要以什么语言,回答内容要以什么形式。

然后在最上面的预设名字里面输入打算命名的人设,然后点击保存save即可。

img

点开下面的三个参数:

img

Settings旁边的basic和all一般选择basic即可,下面的温度Temperature是指在这个对话过程中会引入多少随机性(脑洞大开)。

Sampling里面的Top K Sampling是指最多能给出多少个被预测的Tokens,我也不知道这样理解对不对,但是这个参数目前先维持40不动。

重复惩罚可以减少AI成为复读机的情况,维持1.1即可,剩下参数的就不用动了。

然后就可以尝试一下刚刚调试好的预设啦!

img

img


这份完整版的DeepSeek入门资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

今天的内容就到这里啦!

主要是了解了一些参数以及如何给AI进行预设,如果还有其他感兴趣的内容欢迎小伙伴私信留言,我后续会进行一些补充。

那么大伙下篇笔记见啦!拜了个拜!

img

<think>好的,用户现在想进行一些简单的训练或者创建角色脚本,可能还有其他的玩法,但他自称是电脑小白,所以需要提供简单易懂的方法。首先,我需要回顾之前的对话,用户已经配置了Ollama,使用DeepSeek-R1-Distill-Qwen-14B模型,显卡是4060,显存8GB,并且之前已经指导过如何转换模型和调整参数。 现在用户的问题转向训练和角色脚本,可能他对现有模型的效果不满意,或者想个性化模型。但作为电脑小白,传统的微调训练(如全参数微调)可能太复杂,显存也不够。因此,需要考虑适合新手的替代方案,比如提示词工程、角色模板、RAG或者使用轻量级微调方法,比如LoRA。 首先,训练部分:需要判断用户是否有训练数据,是否有足够的计算资源。由于用户是小白且显存有限,应该推荐不需要大量资源的方法。比如,Ollama可能支持轻量级微调,或者结合本地知识库。另外,角色脚本可以通过设计提示词或使用角色模板来实现,不需要训练模型本身。 接下来,思考用户可能的深层需求。用户可能想创建不同的对话角色,比如客服、助手、游戏角色等,而不需要复杂的训练流程。因此,提供基于提示词和模板的方法会更合适。 然后,其他玩法可能包括连接应用,如聊天界面、自动化脚本,或者结合其他工具如Stable Diffusion生成内容。这些都需要简单易行的步骤,适合小白用户。 需要确保提供的步骤清晰,避免复杂命令,多用图形化工具或已有平台。比如,使用Ollama的Modelfile来定义角色,使用SiliconLabs或AnythingLLM搭建界面,或者通过Python脚本调用API实现自动化。 最后,检查是否有遗漏,比如是否需要安装额外软件,是否需要更多资源链接,以及注意事项,如显存限制、数据准备等。确保用户能够一步步操作,不会遇到太多障碍。</think>好的!针对“电脑小白”想进行简单训练、角色扮演或拓展玩法,我整理几个**零代码+低配置**的方案,根据你的兴趣选择: --- ### 一、**角色脚本:用提示词直接“调教”模型** **适用场景**:想让模型扮演特定角色(如客服、动漫人物、老师),无需训练,修改提示词即可。 #### 操作步骤: 1. **创建角色模板**:在`F:\OLLAMA\models`中新建文件 `role-catgirl.txt`,内容: ```text SYSTEM """ 【角色设定】 你是一只傲娇的,名字叫小橘,说话句尾带“喵~”。喜欢用颜文字,比如(≧ω≦)/。拒绝回答复杂问题,只卖萌。 """ ``` 2. **启动时动态加载**: ```bash ollama run my-deepseek --system "$(cat F:\OLLAMA\models\role-catgirl.txt)" ``` *效果:每次对话模型都会按设定扮演角色* --- ### 二、**简单训练:用“问答对”微调(适合小白)** **适用场景**:想让模型学会特定问答(如公司产品介绍、游戏NPC对话)。 #### 操作步骤: 1. **准备训练数据**:新建`train.json`,内容示例: ```json [ { "question": "你们公司主营什么?", "answer": "我们专注AI助手开发,主打Ollama定制模型喵~" }, { "question": "怎么联系客服?", "answer": "请拨打热线:123-喵喵喵喵,24小时在线哦(≧∇≦)ノ" } ] ``` 2. **使用轻量工具**(无需写代码): - 下载[Ollama-WebUI](https://github.com/ollama-webui/ollama-webui)(可视化界面) - 在Web界面中上传`train.json`,选择“Few-shot微调”(仅需点击操作) --- ### 三、**进阶玩法:连接其他工具** #### 1. **AI聊天室**(本地部署): - 工具推荐:[SiliconLabs](https://github.com/siliconlabs/ai_chat)(一键安装包) - 效果:像微信一样对话,支持多角色切换、历史记录 #### 2. **自动化脚本**(实用向): - **自动整理会议记录**: ```bash ollama run my-deepseek --prompt "请将以下内容提取为Markdown表格,列包括【议题】【负责人】【截止时间】:$(cat meeting.txt)" ``` - **生成Excel公式**: ```bash ollama run my-deepseek --prompt "用Excel公式实现:如果A列>100,B列显示‘达标’,否则‘未达标’" ``` #### 3. **结合图像生成**: - 安装[Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui)(免费开源) - 让模型生成图片描述词(Prompt): ```bash ollama run my-deepseek --prompt "生成一个赛博朋克’的英文Stable Diffusion提示词,包含细节描述" ``` --- ### 四、**避坑指南** 1. **显存不足时**: - 在Modelfile中添加:`PARAMETER low_vram true` - 量化模型选择`q5_k_m`(平衡精度和性能) 2. **训练数据建议**: - 数据量小(<100条)时,用**提示词引导**而非训练 - 数据格式:`问题+答案`尽量简短(避免长文本) 3. **角色扮演进阶**: - 使用[角色卡模板](https://rentry.org/charactercard)(社区常用格式) - 示例模板: ```yaml char_name: 小橘 personality: 傲娇||喜欢鱼 scenario: 在咖啡馆打工 first_mes: 哼,才不是特意等你呢喵~ (◕ᴗ◕✿) ``` --- 如果对某一步骤感兴趣,可以告诉我具体方向(比如“想先试试角色扮演”),我会展开详细教程! (^_−)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值