各位,今天又有大新闻了!
Google DeepMind这帮疯狂研究员又搞出了一个叫JEST的玩意儿,能**把AI训练时间砍掉13倍,还能让算力需求直接腰斩90%!**这简直就像是给你家那台年久失修的老爷车装上了火箭推进器,一脚油门下去直接飞上月球!
这帮Google的疯狂科学家们到底是怎么做到的呢?他们发明了一个叫**“联合样本选择”(Joint Example Selection,JEST)**的算法。这玩意儿就像是给AI模型找了个超级挑剔的私教,只挑那些最有"集体学习价值"的数据来训练。听起来像是给你家那只蠢猫报了个哈佛预科班,只学最牛逼的知识!
但是等等,还有更劲爆的!他们还搞出了个叫Flexi-JEST的东西。这玩意儿简直就是AI界的变形金刚,能根据需要自动调整图像分辨率。这就像是给你的眼睛装了个变焦镜头,想看清楚就放大,想省电就缩小,简直不要太方便!
而且,这帮研究员还发明了一个叫**"多分辨率训练**"的技术。他们把一批数据分成两半,一半高清一半渣画质。这简直就像是让AI一边看4K蓝光大片,一边看VHS老录像带,但神奇的是,这样居然能节省36%的计算量!这就像是让你一边吃法国大餐,一边啃路边摊,但somehow你的胃口和营养都变好了!
最骚的是,他们还搞了个叫"数据质量引导"的玩意儿。就是用一小撮精挑细选的数据来训练一个"参考模型",然后用这个模型来指导更大规模数据的筛选。这简直就像是找了个挑食的老饕来帮你点菜,保证每一口都是极品!
结果怎么样?简直惊爆眼球!JEST++能用13倍少的迭代次数就达到基准模型的性能。Flexi-JEST++更是牛逼,用11倍少的迭代和10倍少的计算量就创造了新的记录!这就像是用十分之一的时间和金钱,把你从街边小混混变成了功夫大师,简直是开了挂!
但是,各位程序员兄弟们,别高兴得太早。这玩意儿一出来,你们的工作量可能就要暴增了。因为现在AI训练变得这么快、这么便宜,老板们肯定会让你们加班加点地训练更多模型。你们可能要从996变成007了,连睡觉的时间都要用来调参!
最后,让我们为那些即将失业的高性能计算机们默哀三秒钟。JEST++的出现,意味着它们可能很快就要被扫地出门,沦为电子垃圾了。也许以后我们会看到它们站在路边举牌:
“高性能计算机,求包养,擅长大规模并行计算,可以24小时不间断工作,价格面议。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。