MindsDB 简介
MindsDB[1] 提供了一个强大的平台,使得从企业数据构建AI变得更加简单和直观。通过其丰富的集成选项和易于使用的接口,MindsDB能够帮助开发者和企业快速构建和部署AI驱动的应用程序。
项目特点
主要特点
-
数据源集成:MindsDB与多种数据源集成,包括数据库、向量存储和应用程序,以及流行的AI/ML框架,如AutoML和LLMs。
-
自动化工作流:MindsDB连接数据源和AI/ML框架,自动化它们之间的常规工作流程。
-
自定义AI系统:通过将数据和AI结合,MindsDB使得实现定制化的AI系统变得直观。
-
多语言支持:MindsDB支持通过SQL API、REST API、Python SDK、JavaScript SDK和MongoDB-QL等多种方式与用户交互。
-
增强SQL语法:MindsDB扩展了SQL语法,使得AI应用的开发和部署更加无缝。
使用场景
-
AI工作流自动化:涉及从数据源获取数据,通过AI/ML模型处理,并将输出写入数据目的地的任务,如异常检测、数据索引/标记/清洗和数据转换。
-
AI系统部署:涉及创建由多个连接部分组成的AI系统,包括各种AI/ML模型和数据源,并通过API暴露这些AI系统,如代理和助手、推荐系统、预测系统和语义搜索。
项目使用
快速开始
通过Docker安装MindsDB,连接数据源,使用AI和ML准备数据,并实现多种用例,详细可参考MindsDB安装说明[2]。
使用示例
MindsDB支持包括RAG、Agents和自动化AI-data工作流在内的多种用例。下面是一个AI系统部署示例,展示了如何创建一个能够搜索结构化数据的AI代理,包括连接数据源、创建技能、部署会话模型、创建代理和查询代理。
-- Step 1: Connect a data source to MindsDB CREATE DATABASE data_source WITH ENGINE = "postgres", PARAMETERS = { "user": "demo_user", "password": "demo_password", "host": "samples.mindsdb.com", "port": "5432", "database": "demo", "schema": "demo_data" }; SELECT * FROM data_source.car_sales; -- Step 2: Create a skill CREATE SKILL my_skill USING type = 'text2sql', database = 'data_source', tables = ['car_sales'], description = 'car sales data of different car types'; SHOW SKILLS; -- Step 3: Deploy a conversational model CREATE ML_ENGINE langchain_engine FROM langchain USING openai_api_key = 'your openai-api-key'; CREATE MODEL my_conv_model PREDICT answer USING engine = 'langchain_engine', model_name = 'gpt-4', mode = 'conversational', user_column = 'question', assistant_column = 'answer', max_tokens = 100, temperature = 0, verbose = True, prompt_template = 'Answer the user input in a helpful way'; DESCRIBE my_conv_model; -- Step 4: Create an agent CREATE AGENT my_agent USING model = 'my_conv_model', skills = ['my_skill']; SHOW AGENTS; -- Step 5: Query an agent SELECT * FROM my_agent WHERE question = 'What is the average price of cars from 2018?';
-
连接数据源:将PostgreSQL数据库连接到MindsDB。
-
创建技能:基于汽车销售数据集创建文本到SQL的技能。
-
部署对话模型:创建并使用基于Langchain的对话模型。
-
创建代理:创建一个代理,并分配技能和模型。
-
查询代理:通过提问来查询代理,获取数据存储在分配的技能中的问题答案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。