知识图谱构建实战:GraphRAG与Neo4j的结合之道

前言

我们在前面讲解 GraphRag 从原始文本中提取知识图谱和构建图结构的时候,最后存储的文件是parquet 格式,文件存储在下面文件夹:

这节我们就探索一下怎么将我们生成好的图谱文件导入到我们的 Neo4j 图数据库,最后进行可视化分析,也能和我们之前的项目混合检索结合起来。

一、准备工作

新建一个 python 脚本文件,比如 graphrag_import.py 可以放在项目的根目录,这里可以随便选择,然后设置我们GraphRAG 生成的图谱文件目录:

  GRAPHRAG_FOLDER="artifacts"

安装 neo4j ,如果前面安装过,可以忽略:

  pip install --upgrade --quiet neo4j

导入我们需要的库:

import pandas as pd  
from neo4j import GraphDatabase  
import time  

设置我们的 Neo4j 图库地址,账户密码,以及要导入的数据库名字:

NEO4J_URI="bolt://********:7687"  
NEO4J_USERNAME="neo****"  
NEO4J_PASSWORD="*****"  
NEO4J_DATABASE="****"  
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))  

下载一个语料数据集,https://www.gutenberg.org/cache/epub/24022/pg24022.txt

根目录新建 /ragtest/input 空文件,然后把下载好的语料文件放入 input 下面。

二、创建约束

定义一个批处理方法, 使用批处理方法将数据导入 Neo4j

参数:statement 是要执行的 Cypher 查询,df 是要导入的数据框,batch_size 是每批要导入的行数。

def batched_import(statement, df, batch_size=1000):  
    total = len(df)  
    start_s = time.time()  
    for start in range(0,total, batch_size):  
        batch = df.iloc[start: min(start+batch_size,total)]  
        result = driver.execute_query("UNWIND $rows AS value " + statement,  
                                      rows=batch.to_dict('records'),  
                                      database_=NEO4J_DATABASE)  
        print(result.summary.counters)  
    print(f'{total} rows in { time.time() - start_s} s.')  
    return total  

Neo4j 中的索引用于查找图形查询的起点,例如快速找到要连接的两个节点。

为了避免重复,我们主要在实体类型的 ID 上创建约束。

我们使用一些类型作为标记,前后带有两个下划线,以将它们与实际实体类型区分开来。

这些标签(如 __Entity__ , __Document__, __Chunk__, __Community__, __Covariate__)通常用于标识不同类型的节点。

标签本身没有固定的意义,它们的意义完全取决于你的数据模型和应用程序如何使用它们。

  • **Entity__` 通常代表一个实体( `Entity` ),可能是现实世界中的某个对象、人物、地点或其他可识别的对象。比如,在一个知识图谱中,`__Entity** 可能代表“公司”、“人物”等。

  • **Document__` 可以是一个特殊类型的节点,代表一个文档(Document)或文件,通常是文本数据的容器。比如,在文档分析或文本挖掘的场景中,`__Document** 可能指代一本书、一篇文章、一份报告等。

  • **Chunk__` (块)表示文档的某个片段或块(`Chunk`),在图数据库上下文中,这可能指的是数据的一个片段或部分,通常用于文本分块处理。例如,在自然语言处理任务中,文档可能被拆分成句子、段落或者更小的片段,这些片段可能被标记为 `__Chunk**

  • **Community__` 这个标签表示一个社区(`Community`),通常用于表示图结构中的聚类或群体。例如,在社交网络分析中,`__Community** 可能表示具有共同兴趣的用户群体,或者在知识图谱中表示相互关联的实体群组。

  • **Covariate__` 这个标签可能代表协变量(`Covariate`),即与其他变量一起在统计模型中使用的变量。在一些机器学习或统计模型中,`__Covariate** 可能表示影响或关联其他数据点的属性或特征

下面是一个简单的neo4j查询语句:

MATCH (e:Entity)-[:CONTAINS]->(d:Document)  
WHERE e.type = 'Community' AND d.covariate = 'SomeValue'  
RETURN e, d  

这个查询查找类型为"Community"的实体,这些实体包含具有特定协变量值的文档。

需要注意的是,这些术语的确切用法可能因具体的数据模型和应用场景而异。

在使用 Neo4j 时,重要的是根据您的特定需求来设计和实现数据模型。

关于 Neo4j 的查询部分,后面再细说。

创建一个约束(constraint):

statements = """  
create constraint chunk_id if not exists for (c:__Chunk__) require c.id is unique;  
create constraint document_id if not exists for (d:__Document__) require d.id is unique;  
create constraint entity_id if not exists for (c:__Community__) require c.community is unique;  
create constraint entity_id if not exists for (e:__Entity__) require e.id is unique;  
create constraint entity_title if not exists for (e:__Entity__) require e.name is unique;  
create constraint entity_title if not exists for (e:__Covariate__) require e.title is unique;  
create constraint related_id if not exists for ()-[rel:RELATED]->() require rel.id is unique;  
""".split(";")  
for statement in statements:  
    if len((statement or "").strip()) > 0:  
        print(statement)  
        driver.execute_query(statement)  

通过字符串 split 函数将字符串分割成数组,然后执行循环取值,最后交给 Neo4j 执行。

这个创建约束的语句具体含义是:为所有标签为 __Chunk__ 的节点创建一个约束,要求它们的 id 属性必须是唯一的。

如果这个约束已经存在,则不会重复创建。

执行成功,可以看到结果下面是这样:

三、导入文档

我们现在需要加载文档的 parquet 文件, 使用 Pythonpandas 库来读取和处理数据,然后使用其 id 创建节点并添加 title 属性。

我们不需要存储 text_unit_ids,因为我们可以创建关系,并且文本内容也包含在块中,如下面所示。

doc_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_documents.parquet', columns=["id", "title"])  
doc_df.head(2)  

执行它:

导入文档到图数据库:

# import documents  
statement = """  
MERGE (d:__Document__ {id:value.id})  
SET d += value {.title}  
"""  
batched_import(statement, doc_df)  

得到结果:

然后我们加载文本单元,为每个 id 创建一个节点并设置文本和标记数量。

然后我们将它们连接到我们之前创建的文档。

text_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_text_units.parquet',  
                          columns=["id","text","n_tokens","document_ids"])  
text_df.head(2)  

得到下面结果:

导入文本单元到图数据库:

statement = """  
MERGE (c:__Chunk__ {id:value.id})  
SET c += value {.text, .n_tokens}  
WITH c, value  
UNWIND value.document_ids AS document  
MATCH (d:__Document__ {id:document})  
MERGE (c)-[:PART_OF]->(d)  
"""  
batched_import(statement, text_df)  

这段 cypher 的含义是创建或更新一个 __Chunk__ 节点,设置其属性。

对于与这个 Chunk 相关的每个Document :找到对应的 __Document__ 节点。

创建一个从 __Chunk____Document__PART_OF 关系。

运行结果:

加载实体:

entity_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_entities.parquet',  
                            columns=["name","type","description","human_readable_id","id","description_embedding","text_unit_ids"])  
entity_df.head(2)  

运行结果:

导入实体:

entity_statement = """  
MERGE (e:__Entity__ {id:value.id})  
SET e += value {.human_readable_id, .description, name:replace(value.name,'"','')}  
WITH e, value  
CALL db.create.setNodeVectorProperty(e, "description_embedding", value.description_embedding)  
CALL apoc.create.addLabels(e, case when coalesce(value.type,"") = "" then [] else [apoc.text.upperCamelCase(replace(value.type,'"',''))] end) yield node  
UNWIND value.text_unit_ids AS text_unit  
MATCH (c:__Chunk__ {id:text_unit})  
MERGE (c)-[:HAS_ENTITY]->(e)  
"""  
batched_import(entity_statement, entity_df)  

运行结果:

加载关系:

rel_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_relationships.parquet',  
                         columns=["source","target","id","rank","weight","human_readable_id","description","text_unit_ids"])  
rel_df.head(2)  

导入关系:

  rel_statement = """  
    MATCH (source:__Entity__ {name:replace(value.source,'"','')})  
    MATCH (target:__Entity__ {name:replace(value.target,'"','')})  
    // not necessary to merge on id as there is only one relationship per pair  
    MERGE (source)-[rel:RELATED {id: value.id}]->(target)  
    SET rel += value {.rank, .weight, .human_readable_id, .description, .text_unit_ids}  
    RETURN count(*) as createdRels  
"""  
batched_import(rel_statement, rel_df)

运行结果:

加载社区:

community_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_communities.parquet',  
                     columns=["id","level","title","text_unit_ids","relationship_ids"])  
community_df.head(2)  

运行结果:

导入社区:

statement = """  
MERGE (c:__Community__ {community:value.id})  
SET c += value {.level, .title}  
/*  
UNWIND value.text_unit_ids as text_unit_id  
MATCH (t:__Chunk__ {id:text_unit_id})  
MERGE (c)-[:HAS_CHUNK]->(t)  
WITH distinct c, value  
*/  
WITH *  
UNWIND value.relationship_ids as rel_id  
MATCH (start:__Entity__)-[:RELATED {id:rel_id}]->(end:__Entity__)  
MERGE (start)-[:IN_COMMUNITY]->(c)  
MERGE (end)-[:IN_COMMUNITY]->(c)  
RETURN count(distinct c) as createdCommunities  
"""  
batched_import(statement, community_df)  

运行结果:

加载社区报告:

community_report_df = pd.read_parquet(f'{GRAPHRAG_FOLDER}/create_final_community_reports.parquet',  
                               columns=["id","community","level","title","summary", "findings","rank","rank_explanation","full_content"])  
community_report_df.head(2)  

运行结果:

导入社区报告:

# import communities  
community_statement = """  
MERGE (c:__Community__ {community:value.community})  
SET c += value {.level, .title, .rank, .rank_explanation, .full_content, .summary}  
WITH c, value  
UNWIND range(0, size(value.findings)-1) AS finding_idx  
WITH c, value, finding_idx, value.findings[finding_idx] as finding  
MERGE (c)-[:HAS_FINDING]->(f:Finding {id:finding_idx})  
SET f += finding  
"""  
batched_import(community_statement, community_report_df)  

运行结果:

至此 GraphRag 文件导入完毕,我们可以进入 Neo4j 的浏览器界面进行可视化分析。

每个实体可以点开,可以看到石猴为中心的各种关系。

点开社区,可以看到这是对某一事件的整合,并且关联了哪些人物。

可视化分析方式还有很多,可以查看文档,文本单元等等,对于我们不同的输入检索文本我们需要做不同的数据分析,至于我们想要的结果,也是一目了然。

四、总结

通过导入让 GraphRag 生成的图文件能够存储到我们的 Neo4J 里面,然后使用 Neo4J 可视化分析GraphRAG 索引结果,让我们能够更为直观的了解整个 GraphRAG 索引结果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值