RAG 升级版-MemLong: 基于记忆增强检索的长文本建模方法

1. 研究背景与问题

大型语言模型(LLMs)近年来在各个领域取得了显著成功,但在处理长文本方面仍面临着严峻挑战。这些挑战主要源于两个方面:注意力机制的计算复杂度和生成过程中的内存消耗。

传统的注意力机制具有二次时间和空间复杂度,可表示为:O(n^2),其中n为序列长度。这导致在处理长序列时计算资源需求呈平方增长。同时,在生成过程中,模型需要缓存key-value对,其内存占用随序列长度线性增长。

为了直观理解这一问题,让我们考虑一个具体案例:假设我们有一个包含1百万个单词的长文档需要总结。传统的LLM可能将上下文窗口限制在4096个标记内。这意味着模型在任何给定时刻只能"看到"文档的一小部分,很可能会丢失重要的长程依赖关系和全局上下文信息。

例如,如果文档开头介绍了一个关键概念,而在结尾部分需要引用这个概念,传统模型可能无法建立这种长距离联系。这不仅会影响摘要的质量,还可能导致生成的内容出现前后矛盾或重复信息的问题。

这些限制严重影响了LLMs在长文档摘要、多轮对话、长篇文学创作和复杂代码生成等长序列任务中的应用。

2. 研究目标和主要贡献

面对上述挑战,本研究的主要目标是开发一种能够有效处理长文本的语言建模方法,同时在扩展上下文长度的同时保持模型在短文本上的性能,并提供一种计算效率高、易于实施的解决方案。

为了实现这些目标,论文提出了MemLong (Memory-Augmented Retrieval for Long Text Generation) 方法。MemLong的主要贡献包括:

  1. 外部检索增强:利用外部检索器获取历史信息,显著增强了长文本语言建模能力。

  2. 模块化设计:结合非可微的ret-mem模块和部分可训练的仅解码器语言模型,实现了灵活的架构设计。

  3. 细粒度检索注意力:引入可控的检索注意力机制,利用语义级相关块,提高了信息利用的精确度。

  4. 高效训练与推理:通过冻结部分参数和智能记忆管理,大幅提高了训练和推理效率。

  5. 显著性能提升:在多个长文本基准测试中,MemLong consistently outperforms其他先进模型。

让我们通过一个具体例子来说明MemLong的优势。考虑一个长篇科技论文的摘要生成任务:传统模型可能会在处理论文后半部分时"遗忘"前面提到的重要概念或方法。而MemLong能够在生成过程中动态检索相关的历史信息,确保摘要涵盖了论文的全部关键点,并保持概念使用的一致性。

3. 方法详解

MemLong的核心思想是将过去的上下文和知识存储在不可训练的记忆库中,并利用这些存储的嵌入来检索块级key-value(K-V)对输入模型。这种方法允许模型在处理长文本时能够"回顾"之前的内容,类似于人类在阅读长文档时会不时回顾前面的章节。

MemLong的工作流程可以分为以下几个步骤:

  1. 输入分块:将超过模型最大处理长度的输入文本分为前缀和主体。

  2. 记忆过程:对前缀部分进行编码和存储,每个固定大小的块都会被编码并存储其K-V对和检索表示。

  3. 检索过程:在处理主体部分时,对每个当前上下文块进行编码,并与存储的历史信息计算相似度,检索最相关的历史块。

  4. 注意力重构:在模型上层引入检索因果注意力机制,融合局部上下文和检索到的块级历史信息。

  5. 动态记忆更新:使用计数器记录每个索引的检索频率,并在记忆溢出时根据策略更新记忆内容。

让我们通过一个文学创作的例子来具体说明MemLong的工作原理:

想象一个AI正在创作一部长篇小说。在写到第50章时,AI需要回顾第1章中介绍的一个重要人物特征。传统模型可能已经"遗忘"了这些早期信息,导致角色描述不一致。而使用MemLong:

  1. 小说的前49章已经被编码并存储在记忆中。

  2. 在写作第50章时,MemLong会对当前段落进行编码。

  3. 系统会计算这个编码与存储的历史章节的相似度,并检索出最相关的部分(可能包括第1章的人物介绍)。

  4. 在生成新内容时,模型会融合当前上下文和检索到的历史信息,确保人物描述的一致性。

  5. 如果发现某些早期章节很少被检索,系统可能会在记忆更新时将其移除,为更相关的信息腾出空间。

这种方法不仅提高了长文本的连贯性和一致性,还大大增强了模型处理复杂叙事结构的能力。

4. 实验结果与分析

MemLong在多个长文本语言建模基准测试中展现出优异性能。以下是一些关键实验结果和分析:

长文本语言建模

在PG-19、Proof-pile、BookCorpus和Wikitext-103等数据集上,MemLong在不同长度(1k到16k tokens)的测试中始终优于其他模型。例如,在4k tokens长度的测试中:

模型PG19Proof-pileBookCorpusWikitext-103
OpenLLaMA-3B> 10^3> 10^3> 10^3> 10^3
LongLLaMA-3B9.872.949.577.84
MemLong-3B9.833.119.516.89

这些结果表明,MemLong不仅能够处理长文本,还能在各种类型的文本上保持较低的困惑度(perplexity)。特别值得注意的是,在某些数据集上(如Wikitext-103),MemLong甚至优于专门设计用于长文本处理的LongLLaMA模型。

为了更好地理解这些数字的含义,让我们考虑Wikitext-103数据集的情况。这个数据集包含了大量的维基百科文章,涵盖了广泛的主题和复杂的知识结构。MemLong的低困惑度(6.89)意味着它能够更准确地预测下一个单词,这在实际应用中可能表现为:

  1. 更流畅的文本生成:生成的维基百科文章会更加连贯,减少语法错误和语义不一致。

  2. 更准确的事实陈述:模型能够更好地记住和利用前文提到的事实,减少错误信息的产生。

  3. 更好的长距离依赖处理:例如,在讨论一个历史人物时,即使相隔数千个单词,模型仍能准确引用早先提到的年代或事件。

上下文学习性能

在五个NLU任务(SST-2、MR、Subj、SST-5、MPQA)的few-shot学习实验中,MemLong也表现出色:

模型SST-2MRSubjSST-5MPQA平均
OpenLLaMA93.691.255.438.266.469.0
LongLLaMA94.190.864.241.472.172.7
MemLong93.593.865.843.370.673.4

这些结果展示了MemLong在各种自然语言理解任务中的适应性和稳定性。特别是在情感分析(MR)和细粒度情感分类(SST-5)等任务上,MemLong表现出明显优势。

以SST-5(细粒度情感分类)任务为例,MemLong的43.3%准确率相比其他模型有显著提升。这意味着在实际应用中,比如产品评论分析,MemLong能够更准确地捕捉细微的情感差异。例如,它可能能够区分"还不错"和"非常好"这样细微的评价差别,为企业提供更精确的客户反馈分析。

5. 创新点分析和未来方向

MemLong的几个关键创新点值得深入讨论:

  1. 分布一致性:通过冻结模型下层参数,MemLong确保缓存信息分布保持一致。这解决了之前方法(如MemTrm)中的分布偏移问题。在实际应用中,这意味着模型在处理长文本时能够保持更稳定的表现,不会因为参数更新而导致早期和晚期生成的内容风格不一致。

  2. 训练效率:MemLong仅需微调模型上层,大大减少了计算成本。具体而言,微调3B参数版本的MemLong仅需8张3090 GPU运行8小时。这种高效性使得在有限计算资源的情况下也能快速适应新任务或领域。

  3. 扩展上下文窗口:MemLong能在单个3090 GPU上将上下文窗口扩展到80k tokens。这一成就对于处理超长文本(如整本书籍或长篇研究报告)具有重要意义。例如,在法律文件分析中,模型可以同时考虑合同的所有条款,提供更全面准确的解释。

  4. 细粒度可控检索:MemLong的块级检索机制确保了语义的完整性。在实际应用中,这可能表现为更准确的专业术语使用和更连贯的论述结构。

然而,MemLong仍有一些局限性,这也指明了未来的研究方向:

  1. 模型规模扩展:目前的实验主要基于3B参数的模型。未来可以探索在10B+参数规模模型上的应用,研究MemLong方法在更大模型上的效果和可扩展性。

  2. 多模态扩展:当前MemLong主要针对文本数据。未来可以考虑将这种方法扩展到处理图像、视频等多模态数据,例如在长视频理解任务中应用类似的记忆增强机制。

  3. 动态检索策略:可以探索更复杂的动态检索策略,如根据任务类型自适应调整检索方式,或者引入元学习来优化检索过程。

  4. 解释性研究:深入研究MemLong的决策过程,理解模型如何选择和利用历史信息,这将有助于提高模型的可解释性和可信度。

MemLong为解决大型语言模型在长文本处理中的瓶颈提供了一个有前景的方向。它不仅在技术上提出了新颖的解决方案,也为未来研究提供了多个值得探索的方向。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值