深度|李飞飞:理解世界运作方式是AI的下一步,我们需要从大语言模型转向大世界模型

语言中充满了视觉格言。比如,“眼见为实”,“一幅画胜过千言万语”,“眼不见,心不烦”等等。这是因为我们人类从视觉中获取了很多意义。但并不是一直都具备视觉能力。直到大约 5.4 亿年前,所有生物都生活在水面以下,且它们都无法看见。只有随着三叶虫的出现,动物们才能第一次感知到周围阳光的丰富。接下来发生的事情是非凡的。在接下来的 1 千万到 1.5 千万年中,视觉的能力开启了一个被称为寒武纪大爆发的时期,在这个时期,大多数现代动物的祖先出现了。

今天,我们正在经历人工智能(AI)的现代寒武纪大爆发。似乎每周都有一种新的、令人惊叹的工具问世。最初,生成式AI革命是由像 ChatGPT这样的巨大语言模型推动的,它们模仿人类的语言智能。但我相信,基于视觉的智能——我称之为空间智能——更为根本。语言很重要,但作为人类,我们理解和与世界互动的能力在很大程度上基于我们所看到的。

一个被称为计算机视觉的AI子领域长期以来一直致力于教会计算机拥有与人类相同或更好的空间智能。过去 15 年,该领域迅速发展。并且,在以AI以人为本的核心信念指导下,我将我的职业生涯奉献给了这一领域。

没有人教孩子如何看。孩子们通过经验和例子来理解世界。他们的眼睛就像生物相机,每秒拍摄五张“照片”。到三岁时,孩子们已经看过数亿张这样的照片。

我们需要从大型语言模型转向大型世界模型

我们知道,经过数十年的研究,视觉的一个基本元素是物体识别,因此我们开始教计算机这种能力。这并不容易。将一只猫的三维(3D)形状呈现为二维(2D)图像的方式是无穷无尽的,这取决于视角、姿势、背景等。为了让计算机在图片中识别出一只猫,它需要拥有大量信息,就像一个孩子一样。

这一切直到 2000 年代中期才成为可能。那时,被称为卷积神经网络的算法,经过数十年的发展,遇到了现代 GPU 的强大能力以及“大数据”的可用性——来自互联网、数码相机等的数十亿张图像。

我的实验室为这一融合贡献了“大数据”元素。在 2007 年,我们在一个名为 ImageNet 的项目中创建了一个包含 1500 万张标记图像的数据库,涵盖 22000 个物体类别。然后,我们和其他研究人员使用图像及其相应的文本标签训练神经网络模型,使得模型能够用简单的句子描述之前未见过的照片。利用 ImageNet 数据库创建的这些图像识别系统的意外快速进展,帮助引发了现代AI热潮。

随着技术的进步,基于变换器架构和扩散等技术的新一代模型带来了生成性AI工具的曙光。在语言领域,这使得像 ChatGPT这样的聊天机器人成为可能。在视觉方面,现代系统不仅能够识别,还可以根据文本提示生成图像和视频。结果令人印象深刻,但仍然仅限于2D。

为了让计算机具有人类的空间智能,它们需要能够建模世界、推理事物和地点,并在时间和3D空间中进行互动。简而言之,我们需要从大型语言模型转向大型世界模型。

我们已经在学术界和工业界的实验室中看到了这一点的初步迹象。借助最新的 AI 模型,这些模型使用来自机器人传感器和执行器的文本、图像、视频和空间数据进行训练,我们可以通过文本提示来控制机器人——例如,要求它们拔掉手机充电器或制作一个简单的三明治。或者,给定一张 2D 图像,该模型可以将其转化为用户可以探索的无限数量的合理 3D 空间。

应用是无穷无尽的。想象一下,能够在普通家庭中导航并照顾老人的机器人;为外科医生提供不知疲倦的额外帮助;或者在模拟、培训和教育中的应用。这是真正以人为中心的人工智能,空间智能是它的下一个前沿。人类进化了数亿年所取得的成果,现在在计算机中仅需几十年就能出现。而我们人类将是受益者。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值