Docker是云原生的核心,理解Docker容器原理对于掌握Docker至关重要@mikechen
Docker容器
容器是一种轻量级、可移植的软件打包技术,它将应用程序及其所有依赖项(库、配置文件等)打包到一个独立的运行环境中。
与传统的虚拟机不同,容器共享主机操作系统的内核,因此启动速度更快,资源占用更少。
一次构建,多处运行(Run anywhere)。
本质上,容器就是在宿主机上运行的一个独立进程,它与宿主机共享内核,但具有自己的文件系统、网络栈、进程空间等。
Docker容器原理
Docker 容器的核心原理建立在 Linux 的三大关键技术基础之上:
1.Linux Namespace(命名空间)
Linux Namespace:是Docker实现容器隔离的核心技术之一,命名空间是Linux内核提供的一种隔离机制。
Linux Namespace,通过为进程提供独立的资源视图,实现进程间的隔离。
Docker容器启动时,会为容器内的进程创建一组独立的命名空间,包括:
- PID Namespace:隔离进程ID,使容器内进程拥有独立的PID空间,容器内的进程从1开始编号,宿主机无法直接看到容器内进程。
- NET Namespace:隔离网络接口和IP地址,容器拥有独立的网络栈和网络设备。
- IPC Namespace:隔离进程间通信资源,如System V IPC和POSIX消息队列。
- MNT Namespace:隔离文件系统挂载点,容器拥有独立的文件系统视图。
- UTS Namespace:隔离主机名和域名,容器可以拥有独立的主机名。
- USER Namespace:隔离用户和组ID,实现容器内用户与宿主机用户的映射和隔离。
2.Linux Cgroups(控制组)
Cgroups是Linux内核提供的资源管理机制,用于限制、计量和隔离进程组使用的系统资源。
功能包括:
- 限制 CPU 使用率(如限制最多占用 2 核);
- 限制内存(如最大使用 1GB);
- 限制磁盘 IO;
- 限制网络带宽…等。
通过Cgroups,Docker能够对容器的资源使用进行精细化控制,避免单个容器占用过多资源而影响其他容器或主机。
3.联合文件系统(UnionFS)
UnionFS是一种分层文件系统,Docker镜像和容器文件系统基于此实现。
镜像由多个只读层叠加组成,容器在镜像之上增加一层可写层。
容器运行时,所有文件操作首先在可写层进行,未修改的文件则从只读层读取。
UnionFS 通过将多个文件系统“叠加”,实现高效的文件存储和共享。
这样既能节省存储,也能让多个容器共享相同的镜像层。
总之,Docker容器通过Linux Namespace实现资源视图隔离。
通过Cgroups实现资源限制和管理,通过UnionFS实现高效的文件系统层叠。
三者协同工作构建了轻量级、高效、安全的容器运行环境。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。