论文信息
题目:DiffDGSS: Generalizable Retinal Image Segmentation with Deterministic Representation from Diffusion Models
DiffDGSS:基于扩散模型的确定性表示进行泛化性视网膜图像分割
论文创新点
-
新颖的框架设计:作者提出了DiffDGSS,这是一个基于表示的方法,用于实现精确的视网膜图像分割和稳健的领域外泛化。这是通过利用预训练的去噪扩散概率模型(DDPM)的强大能力来实现的。
-
确定性反演技术的应用:作者展示了通过确定性反演技术从扩散模型中获得的稳健表示,这些表示允许强大的领域外泛化。这一技术克服了现有GANs反演技术在重建质量和计算成本上的局限性。
-
自适应语义特征解释器:为了有效地利用多尺度表示进行领域泛化语义分割,作者设计了一个自适应语义特征解释器。该解释器能够动态适应其在采样时间步的行为,提高了分割的准确性。
摘要
获取视网膜图像的全面分割图是开发可解释的视网膜病变诊断工具的初步步骤。然而,视网膜解剖结构和病变的固有复杂性,以及数据异质性和标注稀缺性,对开发准确且具有泛化能力的模型提出了挑战。去噪扩散概率模型(DDPM)最近在各种医学图像应用中显示出了希望。在本文中,作者出于利用强大的预训练DDPM的动机,引入了一个名为DiffDGSS的新颖框架,以利用扩散模型的潜在表示进行领域泛化语义分割(DGSS)。特别是,作者证明了扩散模型的确定性反演产生了稳健的表示,允许强大的领域外泛化。随后,作者开发了一个自适应语义特征解释器,将这些表示投影到准确的分割图上。在各种任务(视网膜病变和血管分割)和设置(跨领域和跨模态)上的广泛实验表明,DiffDGSS优于最先进的方法。
关键字
视网膜图像 · 扩散模型 · 潜在表示 · 领域泛化语义分割
2 方法论
我们在图1中说明了DiffDGSS的概述。首先,我们简要介绍了DDPM框架。随后,我们详细阐述了确定性反演技术和从DDPM骨干网中提取确定性表示的过程。最后,我们提出了我们的自适应特征解释器,旨在有效利用这些表示进行DGSS。
2.1 去噪扩散概率模型
考虑一个真实的数据点 ,DDPM描述了一个前向扩散过程,该过程在 步中连续向样本引入高斯噪声,导致一系列越来越嘈杂的样本 :
其中 表示一个固定的方差计划, 是最大时间步,选择 使得 看起来像纯噪声。一旦前向扩散过程可以被逆转,就可以在给定纯噪声的情况下创建一个新的样本。然而,反向扩散过程 不能直接计算,DDPM通过以下方式近似它:
其中 和 分别指的是均值预测器和协方差预测器。在实践中,Ho等人提出了训练一个噪声预测器 而不是直接学习 并将方差 固定为一个常数,因为它产生了更好的样本。
2.2 扩散模型的确定性表示
通过将DDPM泛化为一类导致相同训练目标的非马尔可夫扩散过程,Song等人提出了一个更有效的迭代隐式概率模型类别,名为DDIM,它享有以下确定性后验分布:
其中 , ,DDIM采样(生成)过程,以初始噪声 为锚点,为执行前向方向的ODE积分锻造了一个隐式潜在空间:
重要的是,可以以相反的方向(称为DDIM确定性反演)运行这个生成过程,以检索能够以高保真度重建真实图像的潜在代码。尽管在每一步中引入了轻微的误差,但在没有分类器自由指导的情况下它仍然可以很好地工作。我们的关键见解是,潜在空间和图像空间之间存在一个确定性映射,因此我们用图像生成器 参数化 ,该生成器将一系列潜在变量映射到特定图像:
换句话说,网络预测了给定 的干净输入 ,这在执行DDIM确定性反演时产生了多样化的潜在表示形式的中间特征图:
这样的时间步依赖表示允许将它们视为用于领域泛化语义分割的 的确定性表示。
2.3 自适应语义特征解释器
我们开发了一个自适应语义特征解释器来解释多尺度表示 并动态适应其在采样时间步 上的行为。它使用自适应组归一化层(AdaGN)对时间步依赖表示进行条件化,遵循Dhariwal等人的工作,它通过应用通道-wise缩放和平移来扩展组归一化:
其中 是具有正弦编码函数 的多层感知器的输出。然后,自适应segblock由两个连续的DWConv块组成,后跟基于VSS的Mamba块,用于短程和长程依赖性建模。在推理时,我们使用多数投票机制来集成每个时间步依赖表示的预测图,以获得最终的分割图。
3 实验和结果
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。