数据平台的脱敏加密解决方案

摘要:据《2022 年数据泄露成本报告》显示,数据泄露的平均成本已飙升至 435 万美元,创历史新高,且 83% 的受访组织都非首次经历此类事件。在数据驱动发展的时代,保护数据安全已刻不容缓,而数据脱敏加密技术正是守护数据安全的关键防线,为数据的合规使用与价值释放保驾护航。本文介绍数据平台脱敏加密完整的解决方案。‍

  • 什么是数据脱敏‍‍‍‍‍‍‍

  • 什么是数据加密‍‍‍‍‍‍‍‍

  • 数据平台脱敏加密解决方案

01.什么是数据脱敏‍‍‍‍‍

数据脱敏,恰似为敏感数据披上一层 “隐形衣”,它通过既定的脱敏规则,对诸如身份证号、手机号、银行卡号等个人敏感信息,以及企业的商业机密、财务数据等进行巧妙变形,使得数据在保持可用性的同时,隐私与安全得到切实保障。

打个比方,原始的身份证号 “370102198506081234”,经脱敏处理后,或许就变成了 “370119851234”,既保留了地域、出生年份等关键统计信息,又隐匿了具体出生日期与顺序码,有效防止身份盗用风险;再看银行卡号,原本的 “6222021234567890123”,脱敏后变为 “622202****0123”,关键的发卡行识别码与尾号得以留存,满足业务校验需求,中间卡号信息却被妥善隐藏。

(二)常用脱敏规则

1、替换:将敏感数据用预设的字符、符号或虚拟值替代。像手机号,常以 “” 替换中间数位,“138**1234” 既维持号码格式,又规避隐私泄露;姓名脱敏时,可用 “张”“李 *” 等泛化形式呈现,保护个人身份。

2、删除:直接移除敏感信息。如日志记录里的用户 IP 地址,删除后可防止溯源攻击;医疗数据中,若某些诊断细节涉及患者隐私且非必要,删除处理能严守秘密。

3、重排:打乱数据原有顺序。订单号、流水号等,重排数位后内部逻辑仍存,外部却难破解,在数据测试、分析场景,既能保障数据可用,又防信息外流。

4、加噪:给数据添加随机 “噪声”。财务报表数据,适当加噪使精确数值模糊化,既能为数据分析提供趋势参考,又确保核心财务机密不外露,适用于数据挖掘、统计分析场景。

5、加密:运用加密算法转化数据。哈希函数加密密码,生成不可逆密文,数据库存储密文,验证时比对密文,杜绝密码明文存储风险;对称、非对称加密算法用于保护传输与存储数据,确保数据机密性与完整性。

(三)主流脱敏工具

1、Apache ShardingSphere:这款开源分布式数据库中间件的 “明星产品”,依托微内核与可插拔架构,无缝嵌入数据处理流程。配置脱敏规则后,它自动解析、改写 SQL,查询时实时脱敏,数据入库加密存储,出库解密还原,全程对业务代码 “零干扰”,支持海量数据高效处理,是大型分布式系统数据脱敏首选。

2、Mybatis-Mate:专为 MyBatis 框架 “量身定制”,基于注解与配置文件,轻松定义脱敏策略。如对实体类字段加 “@Sensitive” 注解,选定脱敏类型,即可在数据查询、返回时自动脱敏,涵盖常见数据类型,还支持自定义函数,适配个性化需求,小到单体应用,大到微服务架构,皆能灵活运用。

3、MyBatis-Flex:作为 MyBatis 增强框架,其脱敏功能同样出色。在 XML 配置或代码注解里,精准设定脱敏规则,从简单替换到复杂加密算法随心选,且与 MyBatis 生态深度融合,凭借简洁 API、出色性能,助开发者低成本实现数据脱敏,提升项目安全性。

02.什么是数据加密‍‍‍‍‍

加密算法作为加密技术的核心 “引擎”,主要分为对称加密与非对称加密两类,二者相辅相成,为数据安全各显神通。

对称加密算法,恰似一把 “万能钥匙”,加密与解密过程共用同一把密钥。以 AES(高级加密标准)算法为例,它将数据切割成固定长度的 “数据块”,如 128 位、192 位或 256 位,密钥则如同神奇的 “模具”,对每个数据块进行多次复杂的置换、混淆操作,最终把明文塑造成密文。其优势显著,加密和解密速度犹如闪电,在处理海量数据时效率极高,资源消耗却微乎其微,系统负担小。像企业内部大规模数据备份,使用 AES 加密能快速完成任务,不影响日常运营。但它也有 “阿喀琉斯之踵”,密钥管理复杂棘手,一旦密钥在共享、分发或存储环节泄露,数据安全将瞬间崩塌,且多方通信场景下,为不同通信对生成、管理海量密钥,如同 “千头万绪”,极易出错。

非对称加密算法,则像是一组 “鸳鸯钥匙”,公钥与私钥成对出现,公钥可大方公开,用于加密,如同给数据戴上 “公共面具”,私钥却需主人妥善珍藏,是解密的唯一 “秘钥”,如同能识破面具下真容的 “火眼金睛”。RSA 算法便是其中佼佼者,基于大整数分解难题构建安全堡垒,公钥加密的数据,唯有对应的私钥能解开。在数字签名领域,它更是大放异彩,发送者用私钥签名,接收者用公钥验证,确保信息来源可靠、未被篡改,如同信件上的专属印章与印鉴比对。不过,其缺点也较为明显,加密和解密需大量复杂计算,速度慢如蜗牛,面对海量数据往往 “力不从心”;密钥长度较长,存储与传输时占用资源多,对设备性能、带宽要求颇高;且公钥来源合法性、数据完整性校验也需额外手段保障,否则易陷入安全泥沼。

在实际应用中,二者常携手共进。如 HTTPS 协议,先用 RSA 等非对称加密算法安全交换 AES 等对称加密算法的密钥,后续大量数据传输则由快速高效的对称加密接手,如此,既保障初始密钥交换安全,又兼顾数据传输效率,为网络通信铺就坚实安全路,让数据在加密的保驾护航下畅行无忧。

03.数据平台的数据安全治理方案

数据平台的数据安全治理如何进行了?因为正常数据平台的数据是分层设置,并且具有传递和依赖性,因此,我们对于数据平台的安全需要分为血缘分析,元数据管理,脱敏引擎,安全决策引擎等几个配合完成。‍‍‍

元数据管理作为权限管理,脱敏引擎,安全决策引擎的输入,通过判断元数据的字段名称或者描述,判断该数据是否进行权限控制,脱敏加密处理,以及规则处理。

安全决策引擎通过正则+算法+人工,确定需要脱敏加密的字段。‍‍‍‍‍‍

数据血缘追踪敏感字段的传递性。‍‍‍‍‍

脱敏引擎对数据进行脱敏处理,以及加密处理。‍‍‍‍

权限系统可以对数据的查看权限进行配置。

通常我们在做数据平台字段脱敏加密处理的时候,对于一类情况,字段明确需要脱敏加密的,通过算法或者规则可以直接判断进行处理,而对于数据集市中的字段,来源多个字段的聚合结果,是否应该进行脱敏加密处理是常见的困难,也是数据安全解决核心难点问题,包括对于API查询多个表中的数据,以及多个计算之后的数据,如何判断哪些数据需要进行脱敏和加密也是数据安全的难点,而本文则采用ODS层规则识别+数据血缘传递性进行处理,很好的解决这个问题。

1)首先需要在ODS层对所有的敏感字段进行识别和处理,对所有的需要加密的数据进行加密存储。

2)其次在数据仓库DW\DM,数据集市等数据层次依赖数据血缘,自动进行加密和脱敏处理。

**3)而在数据访问和API层则通过SQL脚本解析,通过SQL的血缘关系,也可以标识出对应的脱敏和加密字段,则是API访问是脱敏和加密后安全访问。**‍‍‍‍‍

如上图所示,是数据通过数据血缘自动表示敏感数据并进行处理的过程。因此,在数据安全解决方案中设计到核心的功能如下:

一、数据分级:数据安全的基石

数据分级是数据安全管理的首要环节。它依据数据的敏感性、重要性以及一旦泄露可能造成的影响程度,对数据进行精细的等级划分。例如,在金融领域,客户的账户密码、交易流水等核心数据可能被列为高等级机密数据,而一般性的用户注册信息则处于相对较低的安全级别。通过这种分类,企业能够清晰地识别出不同数据的价值和风险,从而为后续的安全策略制定提供精准依据。在实际操作中,企业可以借助专业的数据安全管理工具,对数据库中的各类数据进行全面扫描和分析,依据预设的分级标准,为每一条数据打上相应的安全级别标签。这不仅有助于企业集中精力保护关键数据,还能在资源分配上实现优化,避免过度保护或保护不足的情况出现。

二、用户分组:权限管理的关键

用户分组功能旨在根据用户的角色、职责以及数据访问需求,将用户划分为不同的群组。在一个大型企业中,财务部门的员工可能需要访问财务相关的数据,而人力资源部门的员工则主要关注员工信息数据。通过用户分组,企业能够针对不同组别的用户,精确配置其对特定数据的访问权限。这种基于用户角色的权限管理方式,极大地提高了管理效率,降低了因权限混乱导致的数据泄露风险。例如,企业可以在其内部的用户管理系统中,为每个用户组设置不同的权限模板,当新员工入职或员工岗位发生变动时,只需将其添加到相应的用户组,即可快速实现权限的分配和调整,确保用户只能在其授权范围内访问和操作数据。

三、脱敏加密:数据隐私的守护者

脱敏加密功能是保护数据隐私的核心手段之一。对于 ODS 贴源层的数据,企业可根据自身业务需求和安全标准,配置详细的脱敏加密规则。例如,在医疗行业,患者的身份证号码、电话号码等敏感信息可以通过脱敏算法进行部分隐藏或替换,使其在保持一定数据可用性的同时,无法被追溯到具体的个人身份。加密技术则可应用于对数据的全盘加密或特定字段加密,确保数据在存储和传输过程中的保密性。在数据处理流程中,脱敏加密工具会按照预设规则,自动对 ODS 贴源层的数据进行扫描和处理,将敏感数据转化为安全的、不可直接识别的形式。这一过程不仅保护了数据的隐私,还能满足企业在数据分析、数据共享等业务场景下对数据安全的严格要求。

四、访问授权:定制化的安全策略

访问授权功能紧密结合用户分组和数据分级,为不同分组的用户在访问不同级别数据时,配置个性化的脱敏加密规则。以电商企业为例,客服人员可能只需要访问客户的基本订单信息,但对于客户的支付密码等高度敏感信息则应完全禁止访问;而财务人员在处理订单结算时,可能需要访问部分经过脱敏处理的支付金额信息,但同样受到严格的权限限制。通过这种细致的访问授权配置,企业能够确保每个用户在其工作所需的范围内,以安全的方式访问和使用数据,有效防止因权限滥用或误操作导致的数据泄露事件发生。在技术实现上,企业通常采用基于身份认证和访问控制列表(ACL)的机制,结合动态权限分配策略,根据用户的身份、所在位置、访问时间等多维度因素,实时判断和授予用户相应的访问权限,实现对数据访问的精细化管控。

五、数据血缘:敏感数据的追踪溯源

数据血缘功能在数据安全体系中发挥着独特而重要的作用。它能够清晰地标识出除 ODS 层以外其他层次(如数据集市、API 层等)的敏感数据来源和流向。在企业的数据处理架构中,数据可能会经过多次转换、聚合和分发,数据血缘功能就像一张数据地图,记录了数据在各个环节的演变过程。例如,在一个数据分析项目中,数据从原始数据源经过 ETL 过程进入数据仓库,再经过进一步的加工和汇总进入数据集市,供业务人员进行分析和决策。数据血缘功能可以准确地追踪到每个数据元素在这个过程中的变化情况,当发现某个数据集市中的敏感数据存在安全风险时,企业能够迅速回溯到数据的源头和中间处理环节,及时采取相应的安全措施,如重新评估数据的脱敏加密策略、检查数据处理过程中的权限设置等,确保敏感数据在整个数据生态系统中的安全性和合规性。

数据安全功能模块中的数据分级、用户分组、脱敏加密、访问授权和数据血缘等功能相互协作、相互补充,共同构建起一道坚不可摧的数据安全防线。企业在数字化转型过程中,应高度重视这些功能的建设和应用,不断优化和完善数据安全管理体系,以应对日益复杂的数据安全挑战,保障企业数据资产的安全与稳定。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值