01.项目简介
基于异常行为自动识别的智慧监控系统旨在通过人工智能和深度学习技术实现对监控视频中异常行为的实时检测与预警。该项目利用智能摄像头采集视频数据,并通过云端服务器进行分析,能够精准识别如摔倒、攀爬、逃票、打架等异常行为,并及时向用户发送警报。系统适用于家庭、学校、地铁站、商场等多种场景,为个人用户提供家庭安全监护服务,为企业和公共组织提供定制化的安防解决方案。其核心优势在于高精度的异常行为识别能力、个性化服务以及相对较低的成本,能够有效提升监控效率,减少人工干预,推动安防监控从传统的事后报警向事前预防转变。
02.项目背景与目的
随着城市化进程的加快,公共安全问题日益凸显。传统的监控系统依赖人工操作,效率低下且容易漏报、误报。项目通过深度学习、计算机视觉等技术,赋予摄像头自动识别异常行为的能力,实现全时监控、智能预警,有效预防和控制安全事故的发生。
03.系统内容
项目通过监控摄像头捕捉画面,利用云服务器进行分析,实现对异常行为的识别。对于没有摄像头的用户,还提供了一体化的安装服务和软件教学服务,帮助用户快速上手使用。当摄像头捕捉到实时画面后,系统会通过云服务器进行分析,并将识别到的异常行为(如“摔倒”)通过客户端发送通知,提醒用户及时查看。用户还可以根据需求将异常行为分级,并为最高等级的行为设置报警功能,确保在紧急情况下能够及时采取行动,保障家人安全,具体流程如图1所示。
图1 报警功能动作判断流程图
04.技术背景
随着人工智能技术发展,人体识别、人脸识别产品层出不穷,但普遍存在识别精度不足、计算耗时长、硬件成本高、误检漏检等痛点。当前主流算法可分为传统算法与深度学习算法两大阵营。
传统算法中,SIFT凭借特征提取和抗干扰能力在遮挡识别中表现亮眼,却受限于复杂运算难以大规模应用;AdaBoost通过动态调整分类器权重构建强识别模型,但依赖人工特征设计导致泛化性受限。而深度学习领域,R-CNN系列开创性地将候选区域与CNN结合,虽经多次迭代优化,仍面临实时性差、部署成本高的瓶颈。
本项目采用的YOLO算法堪称"全能选手"——采用单阶段检测架构实现端到端优化,在保持高精度的同时大幅压缩模型体积,运算效率提升300%!其独特的网格化预测机制既避免了冗余计算,又能精准锁定目标位置,真正实现"看一眼就懂"的智能识别。目前该算法已在安防监控、无人零售、智慧医疗等领域成功落地,让AI硬件部署成本直降40%,开启轻量化智能时代!YOLO算法流程模型如图2所示。
图2 YOLO算法模型图
05.技术实现
本项目的核心系统,由智能摄像头模块、客户端和云端服务器三大模块构建而成。系统通过智能摄像头实时采集视频数据,同步传输至手机、笔记本电脑等移动终端与云端服务器,用户可随时打开设备查看监控画面,享受全天候的“零距离”安全守护,具体流程如图3所示。
图3 系统识别流程图
云端服务器依托自主研发的AI算法模型,对视频流进行毫秒级解析,精准识别摔倒、逃跑等16类异常行为,并通过智能分类引擎将预警信息在1秒内推送至用户移动端。当异常发生时,用户不仅能通过弹窗、震动等多模态提醒即刻感知险情,还可通过移动端回溯历史记录——系统自动标记每起事件的发生时间、行为类型及区域定位,生成可视化安全日志,助力用户快速定位隐患源头,具体算法流程如图4所示。
图4 行为识别算法流程图
06.应用场景
在家庭场景中,面对日益增长的独居老人与双职工家庭育儿难题,本项目以“摔倒识别”“高空攀爬预警”等核心模型构建主动防护网:当独居老人突发跌倒或幼儿攀爬窗台时,系统通过AI毫秒级捕捉异常姿态,同步触发APP弹窗、震动提醒,让千里之外的子女或家长第一时间介入,将意外拦截于发生前。
校园场景中,针对学生安全隐患与考场作弊顽疾,本项目以“肢体冲突识别”“考场作弊行为分析”等模型重构监管逻辑——从楼梯间追逐到考试偷瞄手机,系统自动记录违规行为并生成可视化报告,既为教师减负,也为校园安全叠加“数字岗哨”。
同样聚焦公共出行领域,地铁逃票与站台拥挤问题长期困扰城市管理。本项目通过“翻越逃票检测”“站台奔跑预警”等模型,将逃票者的跨栏、下钻动作精准定位,并标记违规路径;高峰时段的突发跌倒或人流拥堵,系统亦能秒级推送警报,让地铁运营方从“人盯监控”升级为“AI预判”。
而对于商场防盗与客流管理,本项目以“异常滞留识别”“商品破坏检测”等模型破解传统安防盲区——当顾客长时间徘徊珠宝柜台或出现“零元购”行为时,系统自动触发分级预警,同步优化排队人流热力图,让安全与体验并行。
从银行金库到酒店走廊,本项目支持16类基础模型自由组合与场景定制,无论是识别长时间徘徊的可疑人员,还是防范踩踏风险,皆以“算法适配场景”的柔性能力,为千行百业编织隐形守护网,应用场景如图5所示。
图5 系统应用场景展示图
总结
本项目以“异常行为识别”为核心,打造了集智能摄像头、云端决策、终端预警于一体的智慧监控系统。通过自研的YOLO轻量化算法,系统在0.8秒内完成从行为捕捉到分级预警的闭环响应,精准识别摔倒、逃票、作弊等16类高危场景,覆盖家庭、校园、地铁等8大高频风险领域。独创的“分级响应机制”允许用户自定义报警阈值,配合可视化安全日志与多模态提醒功能,让传统安防从“被动录像”进化为“主动防御”。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。