DeepSeek-R1升级:8B蒸馏模型性能比肩Qwen3-235B,已上架 Ollama,可本地部署

近日,DeepSeek 升级更新了 R1 模型(DeepSeek-R1-0528),推理能力、思考深度得到显著提升。其中,8B 小模型 (DeepSeek-R1-0528-Qwen3-8B),数学能力超越 Qwen3-8B (+10.0%),与 Qwen3-235B 大模型相当。小模型的性能大幅度提升,为在终端设备部署高性能 AI 模型提供了可能性

Ollama 为本地部署大模型的框架,DeepSeek-R1-0528-Qwen3-8B 已上架 Ollama,感兴趣的读者可尝试安装 Ollama,在本地部署运行 DeepSeek-R1-0528 模型。

本文主要内容:

  1. DeepSeek-R1-0528 模型介绍
  2. 在 Ollama 上运行 DeepSeek-R1-0528 的 8B 模型
DeepSeek-R1-0528
  • 核心亮点:思考更深、推理更强

    • 版本号: DeepSeek-R1-0528
    • 参数量:671B、8B
    • 基座: 基于 DeepSeek V3 Base (2024年12月),但在后训练过程中投入了更多算力,显著提升了模型的思维深度与推理能力。
    • 性能表现: 在数学、编程与通用逻辑等多个基准测评中取得了当前国内所有模型中首屈一指的优异成绩,并且在整体表现上已接近其他国际顶尖模型,如 o3 与 Gemini-2.5-Pro🥇

img

  • 🧠 推理能力大提升

    • AIME 2025 数学测试: 准确率从旧版 70% → 87.5%!🎯
    • 思考更深: 解题平均 token 用量从 12K → 23K,表明其在解题过程中进行了更为详尽和深入的思考。
    • 知识蒸馏: 用 R1-0528 的思维链训练的 8B 小模型 (DeepSeek-R1-0528-Qwen3-8B),数学能力超越 Qwen3-8B (+10.0%),与 Qwen3-235B 相当!🤯

img

  • 💻 其他能力更新

    • ✅ 大幅减少幻觉:在改写、总结、阅读等场景,幻觉率降低 45~50%,结果更可靠。
    • ✍️ 创意写作更出色:议论文、小说、散文等长文写作能力升级!篇幅更长、结构更完整、文风更贴近人类喜好!
    • 🔧 工具调用:支持外部工具调用(不支持在 thinking 中进行工具调用)。
    • 🚀 在前端代码生成、角色扮演等领域的能力均有更新和提升。
在 Ollama 上运行 DeepSeek-R1-0528 模型

从 Ollama 的 deepseek-r1 主页的介绍可知,8B 和 671B 模型已升级至 0528 版本。

img终端上运行 ollama pull deepseek-r1:8b,下载 DeepSeek-R1-0528 的 8B 模型到本地。

img

下载完成后,运行 ollama run deepseek-r1:8b 命令,在终端开启与模型的对话:

  • 9.11 和 9.9,哪个大
>>> 9.119.9,哪个大
<think>
首先,用户的问题是:“9.119.9,哪个大?”这是一个关于比较两个小数大小的简单问题。

我需要理解这两个数字:9.119.9。它们都是十进制表示,但精度不同。

- 9.11 表示九点一一,即 9 + 0.11

- 9.9 表示九点九,即 9 + 0.9

为了比较它们,我可以将两个数字对齐小数位。9.9 可以写成 9.90,以便更容易比较。

所以:

- 9.11 = 9.11

- 9.9 = 9.90(因为添加一个零不影响其值)

现在,比较整数部分:两者都是 9,所以相同。接下来比较小数部分。

小数部分:9.11 的十分位是 1,百分位是 1;而 9.90 的十分位是 9,百分位是 0(因为它是 90/100)。

更精确地:

- 9.11 = 9 + 11/100

- 9.9 = 9 + 90/100

现在比较分数部分:11/10090/100。

显然,90/100 大于 11/100,因为 90 > 11。

因此,9.9(或 9.90)大于 9.11。

我可以将它们转换为分数:

- 9.11 = 911/100

- 9.9 = 99/10?不,应该是 990/100 或更准确地 9.9 = 99/10,但为了统一分母。

最好使用相同的分母。两个数字都可以表示为以 100 为单位的分数:

- 9.11 = 911/100

- 9.9 = 99/10 = (99 * 10) / (10 * 10) 不,99/10 等于 990/100?让我们计算。

99/10 = ? 要得到分母为 100 的分数,分子和分母都乘以 10(99 * 10) / (10 * 10) = 990/100。是的。

所以:

- 9.11 = 911/100

- 9.9 = 990/100

现在比较分子:911990。显然,990 > 911,所以 990/100 > 911/100。

因此,9.9 大于 9.11。

用户可能犯了一个常见错误,认为有更多的小数位就意味着更大,但在这里,9.9 相当于 9.90,而 9.909.11 大。

在之前的对话历史中,有一个问题:“99.99.11,哪个大?”我回答了,并指出 99.9 表示九十九点九。但现在用户问的是“
9.119.9”,所以是不同的数字。

确保我的回答清晰和准确。

最终答案:9.9 大于 9.11</think>
从数值比较的角度来看:

- **9.11** 表示九点一一(即 9 + 0.11)。
- **9.9** 表示九点九(即 9 + 0.9),也可以写成 9.90 来便于比较。

现在,将两个数字对齐小数位:
- 9.11 = 9.11
- 9.9 = 9.90

整数部分相同(都是 9),因此比较小数部分:
- 小数部分:十分位和百分位。
- 9.11 的十分位是 1,百分位是 1- 9.90 的十分位是 9,百分位是 0。

因为 9.90 的十分位(9)大于 9.11 的十分位(1),所以 **9.9 大于 9.11**。

或者,将两个数字转换为相同的分母:
- 9.11 = 911/100
- 9.9 = 990/100

比较分子:990 > 911,因此 **990/100 > 911/100**,即 **9.9 > 9.11**。

直观上,你可以想象一下数轴或价格比较。例如,在货币中,$9.90 比 $9.11 大。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 比较 Ollama 运行命令及其差异 对于 `ollama run` 命令的不同参数配置,主要区别在于所加载的语言模型的具体版本以及这些版本可能带来的性能和资源消耗上的变化。 当执行 `ollama run deepseek-r1:32B` 和 `ollama run deepseek-r1:32B-distill-qwen` 时,前者调用了原始的 DeepSeek R1 模型,具有完整的 320 亿参数规模;而后者则是经过蒸馏优化后的 Qwen 版本[^1]。这种蒸馏过程通常会减少模型大小并提高推理速度,但可能会略微影响某些复杂任务的表现效果。 具体来说: - **deepseek-r1:32B**: 使用未压缩的大规模预训练模型,在处理自然语言理解、生成等高级任务上表现优异,但由于其庞大的参数量可能导致较高的计算成本和内存占用。 - **deepseek-r1:32B-distill-qwen**: 经过特定技术手段(如知识蒸馏)得到的小型化变体,旨在保持原版大部分能力的同时降低部署门槛,更适合于资源受限环境下的应用开发。 为了直观展示两者之间的差异,可以考虑如下 Python 脚本用于测试相同输入条件下两者的响应时间和输出质量: ```python import time from transformers import pipeline def benchmark_model(model_name, input_text="Tell me about the weather today"): nlp = pipeline(&#39;text-generation&#39;, model=model_name) start_time = time.time() result = nlp(input_text)[0][&#39;generated_text&#39;] end_time = time.time() elapsed_time = round(end_time - start_time, 4) print(f"\nModel Name: {model_name}") print(f"Generated Text:\n{result}\n") print(f"Inference Time: {elapsed_time} seconds") benchmark_model("deepseek-r1:32B") benchmark_model("deepseek-r1:32B-distill-qwen") ``` 通过上述脚本能够对比两种不同配置下模型的实际运行效率及生成文本的质量特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值