IEEE IEEE/ASME 期刊 || 电机故障诊断新突破:多级信息融合技术助力工业安全

本期荐读论文:

Multilevel Information Fusion for Induction Motor Fault Diagnosis.

本期推文的内容概要

在现代工业中,电机作为核心动力设备,广泛应用于各个领域。然而,电机故障不仅会导致生产效率下降,还可能引发严重的安全事故。具体目标是在发生重大损害之前,在初始阶段识别和定位电机故障的根本原因。事实证明,这可以通过测量电机的机械振动、不平衡的定子电流、过热的产生、输出扭矩的降低等来实现。这些参数在结构上与电机的故障模式有关,例如转子杆断裂、轴弯曲或轴承缺陷。传统的故障诊断和电机保护方法依赖于电流不平衡或过压等健康指标,可能无法定位故障并指导用户有效和高效地识别电机故障并查明根本原因。尤其是在故障诱发信号幅度较弱且持续时间短的早期阶段。先进的信号处理和人工智能技术已越来越多地被研究用于提高故障诊断的性能。如何及时、准确地诊断电机故障,成为工业界和学术界共同关注的焦点。今天,我们将为大家介绍一项基于多级信息融合技术的电机故障诊断新方法,帮助大家更好地理解这一领域的最新进展。

问题的背景

传统方法的局限性:传统的电机故障诊断方法主要依赖于单一传感器的数据,如振动信号或电流信号。然而,这些方法存在以下问题:

  • 特征提取依赖人工:传统方法需要手动提取特征,不仅耗时耗力,还容易受到人为因素的影响。

  • 无法适应多变工况:电机在不同负载和转速下的运行状态差异较大,传统方法难以适应这些变化。

  • 信息融合不足:单一传感器的数据往往无法全面反映电机的运行状态,导致诊断结果不够准确。

为了解决上述问题,研究人员提出了一种基于深度学习的多级信息融合网络(MRSFN),通过多尺度分析振动和电流信号,实现了电机故障的精准诊断。

该技术的核心优势在于:

  • 自动特征学习:MRSFN通过卷积神经网络(CNN)和长短期记忆网络(LSTM)自动学习信号中的特征,无需人工干预。

  • 多传感器融合:结合振动和电流信号,MRSFN能够更全面地捕捉电机的运行状态,提升诊断准确性。

  • 多尺度分析:通过不同时间窗口的信号分段,MRSFN能够同时捕捉局部动态和全局状态,适应电机在不同转速下的运行情况。

方法的概述

所提出的 MRSFN 的技术框架如下图所提出的 MRSFN 的技术框架如图所示。一般来说,开发的电机故障诊断方法可以分为以下两个阶段:模型训练(离线)和模型实现(在线)。训练阶段使用累积的历史数据来优化 MRSFN 模型参数,然后将训练后的模型保存为二进制文件。训练后,模型首先从二进制文件加载到内存中,随后通过将预处理的实时信号输入到训练的模型中来计算与每种运动条件相关的概率。开发的方法本质上是一个多类故障分类器。对于在线收集的每个样本,MRSFN 模型输出每种运动条件的条件概率。这意味着该模型能够通过比较故障和健康条件之间的概率来确定某种类型的故障是否发生。这为做出维护决策提供了基础。

(一)信号预处理

人工智能 (AI) 技术与电机电流特征分析相结合,能够对感应电机中的故障进行更准确、可靠和高效的诊断 。电机电流是具有故障特性频率的电机电流供应频率的调制,这一事实需要先进的信号处理方法。通过原始电流信号进行故障诊断无效,因为故障相关特征被主要电源频率所掩盖。采用一种称为包络分析的有效方法来消除电源频率。在本文中,包络分析是通过 Hilbert 变换进行的。实时信号 xt) 的希尔伯特变换定义如下:

通过希尔伯特变换,将 ±90° 的相移引入信号 x(t)。x(t) 的包络线表示如下:

包络分析可以有效地消除直流,并确保与故障相关的特征足够清晰以便识别。因此,电流包络 ct) 将取代原始电流信号 xt) 作为 MRSFN 的输入之一。

(二)部门划分

所提模型的输入表示如下:

它们是同时采样的,因为我们的方法旨在捕捉振动和电流之间的内在关系。n 表示采样数。尽管振动信号和电流包络是序列,但在应用序列模型时仍然存在一些问题,因为逐点将信号导入模型的计算成本很高。解决此问题的典型方法是将信号分解为长度相等的段。以振动信号的分割为例,这个过程表示如:

其中 h 表示用于分段的时间窗口的长度。分割作后,振动信号被分成 n/h 段。在所提出的框架中,通过不同长度的时间窗进行多次分割作,以获得原始信号的多分辨率表示。

(三)逐步特征提取

CNN 用于从每个段(也称为时间步长)中提取特征。为每个分辨率度构建了 2_n/h_ 独立处理流,每个处理流都有类似的基于卷积运算和池化运算的架构。卷积运算通过沿输入信号段移动不同的卷积滤波器来生成一组向量。卷积运算的结果可以表示如下:

池化作压缩特征图以减小神经网络的规模并增强其对小输入干扰的鲁棒性。这项工作中采用的最大池化定义如下:

卷积运算和池化运算交替工作,以获得原始信号的简洁表示。以下方程表示逐步特征提取的整个过程。可以发现,在每个时间步中,特征提取都是单独进行的。

(四)多感官融合和顺序建模

利用一组 LSTM 单元进一步集成时间信息编码和多感官融合。回顾第二节中的 LSTM 门,这些门的数学描述表示如下:

忘记门和输入门根据当前输入和先验单元状态控制内存向量中包含的信息的更新和删除,从而考虑时间依赖性,可以表示如下:

当前步骤的隐藏向量是通过输出门和内存单元的状态计算的:

记忆向量 和隐藏向量被传递给下一个 LSTM 单元,直到完成遍历整个序列。最后一个 LSTM 单元的隐藏向量可以看作是多感官特征结合时间信息的全局表示。

(五)公共空间映射

设表示特定分辨率度 i 下多源信号的全局表示。公共空间映射的目的是找到包含从各种分辨率程度提取的特征的最终表示。由于上述步骤已经很好地管理了原始信号中的冗余和无效信息,因此通过构建一组全连接单元,简单地从连接的 中学习共享表示。此过程可以编写如下:

通过公共空间映射,可以合并从神经网络的不同分支学习的所有表示。与在一个分辨率下学习的表示相比,获得的多分辨率表示更完整地说明了运动条件。

(六)实验研究

电机故障诊断实验在电机测试系统上进行,如下图所示:

静态负载通过两个负载盘施加,可变负载由磁制动系统通过锥齿轮箱和皮带传动施加。采用数据采集系统 (NI-PCI 6259) 进行数据采集。在本研究中,研究了四种型号相同但初期故障不同的电机,如表 I 所示。

这些故障是在电机启动之前引入的。由有缺陷的轴承引起的径向和扭转振动会导致气隙变化和扭矩振荡,从而导致电机电流的幅度调制和相位调制。对于损坏的转子条,不对称的转子回路会在定子电流中产生多个频率分量,并通过影响磁场来引起振动。弯曲的转子带来的动态偏心导致磁通量中的磁吸力和谐波不平衡,分别可能导致有害振动和异常电流分量。

测试电机由三种功率频率(例如 30、40 和 50 Hz)提供,并由三种负载条件(例如 0.056、0.226 和 0.565 N·m)加载,因此测试次数总共为 36 次(4 × 3 × 3)。在每次测试中,以相同的 20 kHz 采样率收集 100 s 的振动和电流信号。样本是在信号中随机获取的,没有重叠,如下图所示:

为了验证所提出的方法在可变作条件下的鲁棒性,制定的分类任务没有区分不同的作条件。整个数据集由 9000 个样本 (36 × 250) 组成,其中 60% 用于训练所提出的模型,其余用于评估。

总结与思考

在推荐的论文中,本文提出了一种称为 MRSFN 的多级信息融合模型,用于感应电机的故障诊断。根据被测电机的在线测量信号,开发的模型为每种电机健康状况输出条件概率。这样就可以通过将与故障相关的概率与基线 (正常) 条件进行比较来评估是否会发生某种类型的故障,从而最终帮助做出维护决策。基于两个案例研究,证明了所开发模型在不同作条件下的有效性和可扩展性。MRSFN 不会提取通常特定于某些机械系统的手工特征,并且多分辨率信息融合的思想有可能应用于分析任何类型的数字信号,这使得它很容易扩展到其他工业系统。然而,作为一种数据驱动的方法,目前研究的局限性自然包括对从故障机器收集的数据的依赖,这也是智能诊断领域的一个悬而未决的问题。已经开展了一些与迁移学习相关的鼓舞人心的研究工作来减轻这种依赖,但还有很长的路要走。重要的是,未来的研究要调查所提出的方法和迁移学习的结合,以弥合在受控实验室环境中进行的测量与现实世界环境中进行的测量之间的差距。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值