分享一个新兴又活跃的方向:LSTM+卡尔曼滤波。核心思想是结合两者各自优势(LSTM的时序建模能力+卡尔曼滤波的动态状态估计),以提高系统的性能和准确性,非常适用于多种时间序列预测和状态估计任务。
这方向属于深度学习与传统滤波算法的交叉领域,目前处于技术上升期,在自动驾驶、无人机跟踪、传感器融合等领域都有很大需求,论文发表潜力高,且容易结合具体场景提出创新方案。
Performance enhancement of diffuse fluorescence tomography based on an extended Kalman filtering-long short term memory neural network correction model
方法:本文提出了一种结合半迭代扩展卡尔曼滤波(SEKF)和长短期记忆网络(LSTM)的后处理算法,以改善漫射荧光断层成像(DFT)的图像重建质量和速度,通过数值模拟、人体模型和体内实验验证其性能。
创新点:
-
结合半迭代扩展卡尔曼滤波(SEKF)与长短期记忆(LSTM)神经网络的后处理算法,显著提高了漫射荧光层析成像(DFT)重建的图像质量和成像速度。
-
SEKF-LSTM算法在体内实验中实现了最高的对比噪声比(CNR)和最接近真实值的半高全宽(FWHM),这表明其具备最佳的抗噪能力和高空间分辨率。
An end-cloud collaboration approach for state-ofhealth estimation of lithium-ion batteries based on biLSTM with collaboration of multi-feature and attention mechanism
方法:文章介绍了一种基于端云协作的锂离子电池健康状态估计方法,其中涉及到了双向长短期记忆网络(Bi-LSTM)和扩展卡尔曼滤波(Extended Kalman Filter, EKF)的结合。在NASA数据集上的实验证明了其高精度和实时监测潜力。
创新点:
-
通过整合独立成分分析(ICA)和差分热伏安法(DTV),从电池老化过程中提取出与电池衰退高度相关的特征。这些特征的提取和使用增强了输入数据的稳健性和信息量。
-
提出了端云协作的架构,通过在端侧实施快速经验模型和在云侧部署高精度深度学习模型,实现了实时性和高精度的平衡。
A Noise Suppression of LSTM algorithm combined with Kalman filter for Agriculture Automation
方法:论文提出了一种结合LSTM和卡尔曼滤波器的新型噪声抑制算法(LSTM-KF),用于农业自动化中的数据流噪声过滤。通过结合两者的优势,显著降低了均方误差(MSE),从而在大规模水产养殖自动化系统中实现了更高效、更精准的噪声抑制。
创新点:
-
提出了结合 LSTM 和 Kalman 滤波器的 LSTM-KF 模型,用于农业传感器的噪声抑制。
-
引入了一种新的基于 LSTM 的自适应滤波方法,通过从权重序列直接学习权重变化,调节传统滤波方案生成的权重。
-
开发了基于物联网的下一代水培自动化系统,结合农业传感器、执行器、无线模块和数据管理,以最大限度地提高可持续食品生产效率并降低成本。
Deep Learning Based Kalman Filter for GNSS/INS Integration: Neural Network Architecture and Feature Selection
方法:论文提出了一种基于深度学习全球导航卫星系统和惯性导航系统集成算法,通过将DNN嵌入到扩展卡尔曼滤波的流程中,利用CNN提取空间信息,以及LSTM捕捉时间序列的动态特性,从而学习系统中的复杂非线性动态、测量噪声和惯性测量单元(IMU)误差。
创新点:
-
提出了一种创新性的算法,将深度学习(DL)与扩展状态卡尔曼滤波器(ES-EKF)结合起来。
-
为了更好地捕捉空间和时间依赖性,作者在深度神经网络的架构中引入了CNN和LSTM。
-
DL与ES-EKF的结合不仅提升了精度,还在计算效率上表现出色,符合实时应用的要求。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。