LSTM再炫技!与卡尔曼滤波结合,成高区“新红人”!

今天给大家推荐一个发顶会新赛道:LSTM+卡尔曼滤波!

其把深度学习与传统滤波算法结合,克服了过往思路的诸多局限( 非线性数据处理能力差、动态适应性不足、噪声不明显……),为复杂时间序列预测和状态估计任务提供了新方案,且效果显著!有研究便通过改思路,在电力系统的动态状态估计任务中,取得了误差狂降5.99倍的优秀成果!

此外,其也拓展了滤波算法的应用范围,不仅以往的任务可以用该思路重做一遍;我们还可以结合新的场景,做微创新,可挖掘空间很广。

为让大家能够早点发出自己的顶会,我给大家准备了15种前沿创新思路,原文和源码都有,相信能够给你带来更多idea启发!

论文原文+开源代码需要的同学看文末

论文:State-of-charge estimation of Lithium-ion battery:Joint long short-term memory network and adaptive extended Kalman filter online estimation
内容

该论文提出了一种结合长短期记忆网络(LSTM-RNN)和自适应扩展卡尔曼滤波器(AEKF)的锂离子电池荷电状态(SOC)在线估计算法。该算法通过预训练的LSTM-RNN模型生成初始SOC估计值,并将其作为反馈输入到AEKF中进行修正,以实现高精度的SOC估计。

论文:Deep Learning Based Kalman Filter for GNSS/INS Integration: Neural Network Architecture and Feature Selection
内容

该论文提出了一种基于深度学习(DL)的卡尔曼滤波算法,用于全球导航卫星系统(GNSS)和惯性导航系统(INS)的融合。该算法通过将深度神经网络(DNN)嵌入到误差状态扩展卡尔曼滤波器(ES-EKF)中,学习系统的复杂动态特性,并优化卡尔曼增益以及惯性测量单元(IMU)的误差估计。

论文:Performance enhancement of diffuse fluorescence tomography based on an extended Kalman filtering-long short term memory neural network correction model
内容

该论文提出了一种基于扩展卡尔曼滤波(EKF)和长短期记忆(LSTM)神经网络的修正模型,用于提高扩散荧光层析成像(DFT)的图像重建性能。该方法通过结合EKF的先验信息和测量误差处理能力,以及LSTM对时间序列数据的挖掘能力,有效改善了DFT重建中的不适定性问题,提高了成像质量和速度。

论文:An end-cloud collaboration approach for state-ofhealth estimation of lithium-ion batteries based on biLSTM with collaboration of multi-feature and attention mechanism
内容

该论文提出了一种基于端云协作的锂离子电池健康状态(SOH)估计方法,结合了云端的深度学习模型(基于双向长短期记忆网络Bi-LSTM和注意力机制)和端侧的快速经验模型(双指数模型),通过扩展卡尔曼滤波器(EKF)进行结果融合与迭代更新。该方法利用多特征分析(包括增量容量分析ICA和差分热伏安法DTV)提取与电池退化强相关的特征,确保模型输入的相关性和鲁棒性。

 关注下方《人工智能学起来》

回复“长短卡尔曼”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

### 卡尔曼滤波LSTM结合用于时间序列预测 在处理时间序列数据时,卡尔曼滤波(Kalman Filter, KF) 和长短期记忆网络(Long Short-Term Memory Network, LSTM) 的组合可以提供更强大的模型来捕捉动态系统的状态变化并做出精确预测。 #### 背景介绍 卡尔曼滤波是一种递归算法,能够有效地估计线性高斯系统中的隐藏状态。KF通过测量观测值和先前的状态估计来进行当前时刻的最佳估计[^1]。然而,在面对复杂的非线性和不确定性环境时,传统的卡尔曼滤波可能无法达到理想的性能水平。 另一方面,LSTM作为一种特殊的循环神经网络(RNN),擅长于捕获长时间依赖关系,并能有效缓解梯度消失/爆炸问题。这使得LSTM非常适合处理具有长期历史影响的时间序列数据分析任务[^2]。 #### 结合方法概述 为了充分利用两者的优势,一种常见的做法是在预处理阶段应用卡尔曼滤波器平滑输入特征向量;而在建模过程中,则利用经过训练后的LSTM网络对未来趋势进行预测: - **初始状态设定**:基于先验知识初始化卡尔曼滤波参数; - **在线更机制**:随着样本到来不断调整内部权重矩阵W_k以及协方差P_k; - **融合层设计**:构建自定义的KFLSTMCell单元作为RNN架构的一部分,允许直接传递前一时刻经由KF修正过的隐含表示给下一个timestep; - **损失函数优化**:采用均方误差(MSE)或其他适合特定应用场景的目标函数指导整个框架的学习过程. ```python import tensorflow as tf from tensorflow.keras.layers import Layer class KalmanFilterLayer(Layer): def __init__(self, units=32, **kwargs): super().__init__(**kwargs) self.units = units @tf.function def call(self, inputs): # Implement the core logic of kalman filtering here. pass def build_model(input_shape): model = Sequential([ Input(shape=input_shape), KalmanFilterLayer(), LSTM(64, return_sequences=True), Dense(1) ]) optimizer = Adam() loss_fn = MeanSquaredError() model.compile(optimizer=optimizer, loss=loss_fn) return model ``` 上述代码片段展示了如何创建一个简单的`KalmanFilterLayer`类继承自TensorFlow/Keras内置的`Layer`, 并将其集成到包含LSTM组件在内的完整深度学习流水线上.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值