在这个快速发展的数字时代,人工智能和大数据技术的崛起正在深刻改变人类社会的方方面面。以 ChatGPT 为代表的大语言模型不仅加速了信息的传播和知识的获取,更推动了计算社会科学成为了一个全新的研究范式。这种范式突破了传统社会科学研究的局限,通过算法驱动的模拟与分析,为复杂社会现象提供了前所未有的解释力和预测能力。大模型驱动的计算社会科学正在重塑我们对社会的理解方式。它将社会视为一个动态的、可模拟的系统,通过构建虚拟的社会实验环境,探索人类行为、社会结构以及政策干预之间的复杂关系。
与传统定量、因果推断方法相比,大模型驱动的计算社会科学彻底变革了分析数据与形成理解的方式,甚至还对数据的来源、进行社会实验的场域展开颠覆。然而,这种技术的广泛应用也带来了新的挑战,例如如何平衡模型的复杂性与可解释性,如何避免过度依赖数据而导致的社会异化等问题,以及更关键的:如何在技术进步与人文关怀之间找到平衡点。通过深入探讨这些问题,我们或许能够更好地理解数字文明对人类社会的影响,并在这一变革中找到属于自己的位置。在此专题中,将介绍 6 篇计算机学者与人文社科学者合作的模拟社会文章,回应时代关切,展望范式未来。
内容预告
What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
Artificial Leviathan: Exploring Social Evolution of LLM Agents Through the Lens of Hobbesian Social Contract Theory
LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay
发表于 EMNLP 2024, CCF B
Decoding Echo Chambers: LLM-Powered Simulations Revealing Polarization in Social Networks
发表于 COLING 2025, CCF B
Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents
发表于 EMNLP 2024, CCF B, Findings
The wisdom of partisan crowds: comparing collective intelligence in humans and LLM-Based agents
发表于 CogSci 2024, CCF B
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。