智慧前言
近年来,江苏省高级人民法院在最高人民法院的关心和指导下,深刻把握法院数字化转型发展机遇,紧扣“公正与效率”工作主题,在全流程无纸化办案基础上,积极借助大数据、人工智能等现代技术推进司法责任制落实、强化审判监督管理,联合江苏省南通市中级人民法院打造“全业务、全流程、全要素”的一站式、嵌入式数智审管平台,辅助监管主体规范、科学、精准监管,让监管有的放矢,为辅助办案、审判质效提升、经济发展和社会治理决策提供多元服务,助力审判工作现代化。
夯实数据基础底座 实现核心业务全覆盖
以全流程无纸化网上办案为基础,破除数据孤岛和数据壁垒,打通数智审管平台与审判执行系统、督查督办系统、信访系统、政务人事系统的数据通道,实现审判数据、人事数据、督查督办数据、信访数据等司法数据资源的全面汇聚,形成“审判质效、审判权运行、重点案件、专项工作”的一站式监管模式;同时,融合公安、知识产权、市场监督、税务、药监等多类外部数据,构建全融合数据基础底座。建立同步汇聚和关联融合机制,制定统一的数据标准和规范,确保数据的完整性、一致性和准确性,促进司法数据采集、利用、复用良性循环。平台创设“指标中心、质量中心、效率中心、效果中心、知识中心、管理中心”六大中心,全面覆盖审判质效、重点案件、审判流程、专项事项等“大审管”核心业务,对立、审、执全过程进行监督管理,涵盖法院审判运行态势分析、法官质效精准画像,为审判管理提供可靠的数据支撑。
数智审管平台总体结构
大数据智能分析引擎 提升数据赋能水平
通过规则引擎、人工智能等技术,对司法大数据进行场景模型建模,打造智能识别、智能管控、智能发起、智能比对、智能分析等功能,有效发挥司法大数据价值,提升数据赋能水平。通过内嵌的AI规则引擎和算法实现对重点案件、重要流程、数据异常、结案文书异常、案件特征等进行智能识别;对不符合审理规定的办案流程进行节点冻结、案件锁定,辅助承办人按照相关规定推进案件办理流程;平台定时、自动发起监督任务,实现院庭长监管从“被动监管”到“主动监管”的转变;通过构建常见的分析模型,从结构化及裁判文书等非结构化数据中进行要素化语义抽取分析,深度挖掘数据间存在的数据关联和数据潜在价值,对案件态势、质效指标、条线质效、人员质效、各案由案件进行全面分析,形成图表、分析报告等,全程留痕、可溯源,为司法管理提供辅助决策参考。
“点线面”数智监管体系 助力精准监管
一是实现重点案件汇聚监管(抓点)。以四类案件、检察监督案件、国家赔偿案件等影响审判质效、保障当事人权利、反映公平正义的重点案件为主,将审判监督管理的权责清单、监管内容嵌入全流程办案系统,进行汇聚管理、跟踪督办,推动除程序管理外的实体监管。智能关联各流程节点信息,对审判数据进行多维度分析,全面实时跟踪案件审理质量;对重点案件的新增、节点逾期、事项变更、重大程序发生、申诉信访等进行实时预警;对案后是否上诉、发回、再审进行持续跟踪;将重点案件的一审、二审、再审、执行各环节以及关键流程节点进行可视化展示,实现清单式、任务式、静默化监管和全流程闭环管理,构建“院长-分管院领导-部门负责人-承办法官”立体化督查模式,辅助监管主体规范、科学、精准监管。
重点案件监管
案件审理全过程预警
二是实现审判流程全程监管(抓线)。对审判、执行阶段明显影响审判效率的关键性节点进行重点监管和精细化监管。优化节点管控、预警提示等功能,实现过程提醒、滚动管理、逐项督导、结果催收、办结核销,推动节点管理从事后被动管理转向事前、事中主动管理。同时,贯通合议庭(或独任审理)、法官会议和审委会系统,实现全流程网上流转,全程留痕。建立经验反馈机制,对关键节点的数据进行智能分析,实时反馈普遍性问题,以及时优化办理流程、调整预警规则。
三是实现审判质效智能监管(抓面)。以审判执行系统为依托,汇聚指标数据、流程数据、程序数据、实体数据、管理数据、经验数据等司法数据,统一算法,做到分散数据集成化、后台数据前台化、重点指标可视化。对收结存案件、指标体系等进行统计、分析,一站式满足质效监管需求。同时,打通单指标分析、案由分析等路径,支持从法院、部门、条线、团队、人员等维度进行智能分析;支持数据按照案件类型、审理程序、繁简判定等维度分析;支持数据反查,对影响质效的数据溯源至部门、人、案,做到精准监管。
审判质效监管
**四是全面实现“三个画像”。**通过“点线面”的全面监管,完成“案件画像”“当事人画像”“法官画像”,通过平台的智能检索功能,监管主体可实时掌握重点案件的全流程各办理节点情况、各审判执行阶段的裁判结果与理由、各阶段办理周期等信息;实时掌握当事人在全省的全部审理、执行、信访案件情况;实时掌握各部门、审判团队、法官、法官助理的审判质效、调查研究、信访投诉、参与重点工作等情况,全景式了解业务部门、个人的审判质效情况,为科学考评评优提供依据,通过数字化手段实现案件全生命周期“精、准、细、严”的闭环管控。
案件画像
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。