✨ 1: LangManus
LangManus是一个社区驱动的AI自动化框架,整合语言模型和专业工具,助力任务自动化并回馈开源社区。
LangManus 是一款基于社区驱动的AI自动化框架,它巧妙地结合了语言模型和各种专业工具,如网页搜索、网页爬取和Python代码执行,旨在实现复杂的AI自动化任务。其核心理念是“源于开源,回馈开源”。
-
多智能体架构:
LangManus 采用分层式的多智能体系统,由一个主管协调多个专业化的智能体来完成复杂的任务。这些智能体包括协调者、规划者、主管、研究员、程序员、浏览器和报告员,它们各司其职,协同工作。
-
强大的LLM集成:
支持多种开源模型(例如 Qwen),兼容 OpenAI 的 API,并采用多层 LLM 系统以应对不同复杂度的任务。
-
丰富的工具集成:
集成了 Tavily API 进行网页搜索,Jina 实现神经搜索,并提供高级内容提取功能。
-
Python 集成:内置 Python REPL,支持代码执行环境和包管理。
-
工作流管理:
提供工作流图可视化、多智能体编排以及任务委派和监控功能。
地址:https://github.com/langmanus/langmanus
✨ 2: LangManus Web UI
LangManus Web UI是LangManus的默认Web界面,基于开源社区,提供AI自动化框架的可视化操作界面。
LangManus Web UI 是 LangManus 自动化框架的默认 Web 用户界面。
地址:https://github.com/langmanus/langmanus-web
✨ 3: Hunyuan3D 2.0
Hunyuan3D 2.0是腾讯研发的先进3D合成系统,可生成高分辨率带纹理的3D资产,效果超越现有模型。
Hunyuan3D 2.0 是腾讯推出的一个先进的大规模 3D 合成系统,推出两个开创性的新版本:3D 2.0 MV(多视图生成)和 3D 2.0 Mini!
Hunyuan3D 2.0 提供了一个强大的工具,可以简化 3D 内容创作流程,并为各种行业和应用打开了新的可能性。
地址:https://github.com/Tencent/Hunyuan3D-2
✨ 4: SmartRead
SmartRead是一个AI驱动工具,可自动注释技术PDF,提供关键见解、相关资源并突出重点。
SmartRead 是一款人工智能驱动的工具,用于自动注释技术 PDF 文档,提取关键信息和重要亮点。它还能提供相关的文章和视频,帮助用户更好地理解技术内容。用户可以下载带有注释的 PDF 文件,方便日后查阅。
SmartRead 的主要功能包括:
-
智能注释:
自动识别 PDF 中的关键信息并进行高亮显示。
-
相关资源:
提供与PDF中技术要点相关的文章和视频,帮助用户深入理解。
-
通用性:
适用于任何技术 PDF 文档。
-
可下载注释:
可以保存带有注释的 PDF 版本。
地址:https://github.com/Dev-Khant/smartread
✨ 5: Docs
Docs是一款开源协作文档编辑器,通过实时协作,让笔记转化为知识,提供易用、安全的知识构建与分享平台。
Docs 是一个开源的、实时的协作文档编辑器,旨在简化知识构建和共享。它提供简单易用的编辑界面,支持离线编辑和多种文档导出格式(如 .odt, .doc, .pdf),并计划在未来增加内置的 Wiki 功能。 Docs 强调文档内容的干净和专注,并提供 AI 辅助功能(生成、总结、纠正、翻译)来提高效率。
核心特点:
-
实时协作:
支持多人同时编辑文档。
-
简洁易用:
提供简单的编辑界面,减少格式复杂性。
-
离线编辑:
允许离线编辑并在重新连接网络时同步更改。
-
格式灵活:
提供有限但美观的格式选项,专注于内容。
-
高效工具:
支持Markdown,多种block类型,快捷指令和快捷键
-
AI辅助:
支持 AI 功能 (生成、总结、纠正、翻译)
-
权限控制:
提供细粒度的访问控制,确保信息安全。
-
多种导出格式:
可以将文档导出为 .odt, .doc, .pdf 等格式。
-
自托管:
易于安装,可扩展且安全,可以作为 Notion、Outline 或 Confluence 的替代方案。
-
开源:
采用MIT协议,鼓励使用、销售和贡献。
地址:https://github.com/suitenumerique/docs
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。