Deepseek本地部署最强指南(喂饭教程)!!

1

本地部署适用场景

  1. 电脑配置优越党:如果你拥有一台配置强劲,尤其是配备独立显卡的电脑,那么本地部署 DeepSeek 绝对是你的不二之选。因为其运行需要强大的硬件支持,特别是对 GPU 的需求较高。
  2. 数据安全捍卫者:倘若你要处理一些私密数据,担心上传到云端会导致泄密风险,本地部署能完美解决你的担忧,让数据全程在自己掌控的环境中运行。
  3. 本地工作融合者:当你的工作需要高频次处理任务,或者任务较为复杂,本地部署可以与本地工作流程更好地结合,提供更高的灵活性和效率。
  4. API 调用成本敏感型:若日常使用量较大,而调用 API 又需要支付不菲费用,通过本地部署,一劳永逸地节省 API 调用开支。
  5. 模型定制爱好者:对于那些想在开源模型基础上进行个性化定制,打造专属模型的技术达人,本地部署为你提供了二次开发的可能。

本文主要写两种部署方式,分别针对不同的人群,如果你是电脑小白,但是还想要个随时可以调用,不被“服务器繁忙”烦扰的话,可以看本文的方法1,直接一键部署。如果你是电脑高手,很了解电脑的相关知识,可以看方法2。

2

一键部署

本文使用的傻瓜式一键部署工具,他是通过这个工具直接把Deepseek一键式部署到你的电脑中,会按按键就可以,不需要什么操作。

  1. 首先,先去下载软件,软件获取可以在公众号中的资源链接中获取!
  2. 获取到软件安装包以后,更改安装位置,点击快速安装即可。

img

  1. 安装完成后,点击右下角立即安装Deepseek

img

  1. 完成以后不需要特殊的操作,等待几分钟即可。

img

这个软件非常方便小白使用,可以说纯是无脑操作,直接一键安装。

3

大神专用

这种方法使用的是手动下载模型,然后手动配置并且部署,这种部署的相对来说比较稳定,也好用,而且适用于多种模型,上面的第一种方法使用有局限性,目前那个软件只能部署Deepseek。

  1. 首先下载Ollama,Ollama是一个可以运行不同开源大模型的AI框架,属于轻量级平民化的一个工具。
  2. 从公众号中的资源链接中下载Ollama软件,然后安装即可

资源中有MacOS系统进和windows系统的安装包,Linux系统的直接执行下面命令即可

curl -fsSL https://ollama.com/install.sh | sh
  1. 安装之后,按win+r,在弹出的窗口中输入cmd

img

  1. 然后就可以打开命令窗口,

img

  1. 然后进入链接所示的网站https://ollama.com/search,复制链接到浏览器,可以看到页面中有以一个deepseek R1。

img

  1. 打开这个链接的内容,根据自己的电脑配置选择模型大小,复制中间的代码到cmd中,执行即可

img

  1. 等执行完会出现如下图所示的内容。

img

  1. 然后你就可以在下面问问题了,但是界面很Low,这时候就需要下载chatbox了,在公众号的资源中有对应的资源
  2. 下载完成以后,直接点击安装,安装过程很简单,直接根据提示走就可以。安装完成之后的界面如下图:

img

  1. 然后我们点击设置,在设置里面修改自己的API Key或本地模型,然后选择下面这个界面箭头所指位置

img

  1. 在打开的界面中选择deepseek R1,点击确定就可以,然后就可以随便使用了!

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值