刚接触大模型论文时,看到满屏的“CheckPoint”是不是瞬间头大?别慌!其实它就像游戏里的自动存档——关键时刻能救你“命”,还能让模型“越练越聪明”。今天用最通俗的话,带你拆解CheckPoint(检查点)如何实现模型“训练存档”。
一、概念解读
CheckPoint(检查点)到底是个啥?CheckPoint是模型训练过程中的“状态快照”,就像给正在升级打怪的AI拍一张全身照。
- 模型参数(脑子里的知识:权重、偏置)
- 训练进度(经验值:训练轮数(epoch)、批次编号(batch))模型超参数(辅助工具:优化器状态、学习率)
*CheckPoint(检查点)通过在训练过程中保存模型的中间状态,方便使用者在需要时恢复训练或进行推理。*
*为什么需要*CheckPoint(检查点)*?****想象你在玩《黑神话:悟空》时,没存档就打最终Boss,结果手滑掉进悬崖……这时候CheckPoint就是你的“时光机”,能一键回到战前满血状态!*****
训练GPT-4、Qwen-max、DeepSeek-R1这样的千亿参数模型时,每次CheckPoint能省下****数百万美元**的算力成本。通过*直接加载最近CheckPoint,大模型继续“上学”,不用重修“小学一年级”。*
同时用CheckPoint保存多个“平行宇宙”的大模型,直接对比哪个版本更聪明。就像老师同时培养10个不同性格的AI学生,看谁考试分数最高。
二、技术实现
*CheckPoint(检查点)如何进行技术实现?CheckPoint通过“拍照存档”与“读档恢复”机制进行技术实现。*
*CheckPoint将模型训练过程中的“记忆”(权重、优化器状态)和“进度”(轮次、学习率)序列化为文件,实现训练中断后原地复活、超参调优时版本穿越、模型部署时一键继承的“时空回溯”能力。*
-
拍照存档:
-
大模型:“主人,我刚学了1000个单词,现在记性里是酱紫的……”
开发者:“好的,拍照存档!”(代码自动保存权重、优化器状态到文件)
-
读档恢复:
-
大模型:“主人,我好像失忆了……”
开发者:“别慌,看这张照片!”(加载CheckPoint文件,大模型瞬间恢复记忆)
**PyTorch如何实现CheckPoint(检查点)?******PyTorch****使用**torch.save
**和**torch.load
**手动保存/加载模型状态字典(**state_dict
**)。******
当模型训练到某一阶段(如第10轮、损失值下降至0.5),系统自动将以下信息打包成“存档文件”(如checkpoint_epoch1_loss0.5.pth
)。
- **模型权重(Weights):大模型的“大脑神经元连接强度”(如1000个单词对应的词向量矩阵)
** - *优化器状态(Optimizer):*大模型的“学习方法”(如Adam优化器的动量、学习率衰减记录)
** - ***训练元数据(Metadata):*大模型的“进度条”(当前轮次、batch步数、损失值)
**
import torchimport os# 定义模型和优化器model = Model()optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 训练循环best_loss = float('inf') # 记录最佳损失值for epoch in range(100): model.train() total_loss = 0.0 # 模拟训练步骤 for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(dataloader) # 保存条件判断(轮数或损失值) save_flag = False if (epoch + 1) % 10 == 0: # 每10轮保存一次 save_flag = True elif avg_loss <= 0.5: # 损失≤0.5时保存 save_flag = True if save_flag: checkpoint = { 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': avg_loss } save_path = f"checkpoint_epoch{epoch+1}_loss{avg_loss:.2f}.pth" torch.save(checkpoint, save_path) print(f"Checkpoint saved: {save_path}")
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。