AIGC颠覆一切的时代,设计行业绝对是被影响最大的那一波。
阿里一位从业近20年的老·设计师站出来说,AI 2.0时代来临后,很多不了解设计行业的人,上来就问他带的设计团队要减多少人。
他说说实话,自己心里面有点不舒服。
“大家为什么会这么理解?”老·设计师说,“其实AI跟设计之间的关系它是相辅相成的。”
啊,不对啊,搞设计的朋友们不都觉得AI入侵,是对事业的威胁吗?
现在在网络上搜索“AI 设计师”等关键词,得到的结果普遍哀鸿遍野。
甚至有独立设计师在网上发表观点称,大量钱少活多的初级设计工作是设计行业不断培养优秀设计师的基础,但AI把地基毁了。
不只是他,好像设计领域方方面面的从业者,都被AI搞得很懵圈——
设计从业者们很懵圈,我在用AI啊,咋还是被大模型时代淘汰了?
公司也很懵圈:上哪儿找训练师教同事学AI去?上哪儿去招能玩转AI的设计师?
更更更懵圈的是高校,好像突然更赶不上趟了,社会企业现在到底需要啥AI技能啊?我们该教啥??
大家拔剑四顾,很懵,很茫然。
不能否认,这些都是设计从业者们在这个时代下的焦虑。
因为AI 2.0来势汹汹,设计人才的供、需,在产业和学界之间出现了断裂——
这话不是量子位说的,是上面那位老·设计师,阿里国际数字商业集团副总裁、阿里巴巴设计委员会理事长杨光(花名青云)说的。
△杨光(花名青云)
但让人舒了一口气,他不仅陈述了现状和危机,还给出了解决之道:
-
相比会做设计的AI,更应该关注会用AI的设计师。
-
AI时代的设计重塑,离不开平台的技术能力、应用场景和生态建设。
有点道理。
我们可以这样理解:AI进入2.0时代后,对初级设计师来说,AI是杀手;但对会用AI的设计师来说,AI是帮手。
如科幻作家威廉·吉布森(William Gibson)所说的那样:
未来已来,只是分布不均。
此情此景,迫切需要一个平台来平等地帮助每一个设计师们,化杀器为利器。
更应关注“会用AI的设计师”
先来说一个又惊喜又恐怖的现状吧:
AI已经渗透在设计行业方方面面。
梳理用户体验流程、描绘用户路径的体验设计还好;但创意设计领域,是实打实的被撼动了地位,最直接的感受就是,不少原画师直接被AI取而代之。
早在去年3月,中央广播电视总台经济之声就曾报道,有的公司用了AI之后,裁掉了接近一半的原画师。故而,他们也被称为“第一批被AI抢走饭碗的人”。
设计领域别的从业者也不安全。麻省理工学院媒体实验室教授John Maeda在《技术中的设计报告》(Design in Tech Report)中提到,88%受访的设计师认为,5年后开始,视觉设计师就可能被AI彻底取代。
可以说,设计行业已经在被AI颠覆了,与其在时代浪潮中随波逐流,不如主动出击。
是时候重塑设计了,是时候弥合设计行业产与学之间日渐增大的鸿沟了。
当然了,该如何做,尚无定论。
不过,在最近杭州举办的以AI时代的设计为主题的D20全球设计院长峰会上,国内外20多所设计院校的院长,和来自AI产业、设计行业的代表,围绕这个问题进行了深度有力的探讨。
青云,在峰会开幕式上抛出了自己的观点,认为设计行业主要会在三个方面被AI重塑:
**一是设计流程,**设计的生产流程被重置。
在流程上,现在做设计前需要找模型、预训练、做工具的组合运用,每个工序及协作者也发生了巨大的变化。
AI释放了新的生产力,AI设计工具已经变成了设计助手,而非仅是传统意义上的设计工具。
二是设计师,设计师这个职业将被重新定义。
从做得好不好看,画得精不精美,不断迁移到设计师要以解决问题为核心,能够真正的将创意跟AI相结合,能产生大量的设计用于大规模生产。
与其讨论设计模型,不如花更多精力关注设计师的能力模型。
设计的生产方式重置了,协作方式也都发生了变化,设计师作为庞大经济系统中的一个工种,必然也将大不相同。
三是设计生态,设计生态正在重构。
除了设计师,更多角色会参与到生态中进行创作。有想法的人,都可以成为设计师。
随着生产关系变了,生产者变了,他们所在的生态自然也变了。
以上三点中,作为流程和生态里的一环,设计师无疑是重点关注对象。
不同于以往设计工具的变革,生成式AI的出现,相当于设计的世界里,加入了一个新的智慧。
好消息是,AI还不能跟人平起平坐,它起到的作用不是凌驾于设计师之上,而是激发设计的生产力。
同时由于AI在稳定性和可控性上还需精进,哪怕用上了AI,最终设计作品的呈现,依然要依靠设计师的经验判断。
在D20集合诸多高校院长的闭门圆桌论坛《AI时代下的人才教育》上,南京艺术学院校长张凌浩发言表示:
未来的设计师可能在技术层面上逐渐退出,转向做战略性决策。
可以借助先进科技,但最终还是要靠自己下判断——这么说吧,AI时代的设计师,有点子像老中医。
鉴于以上种种,青云也提出了自己的看法:
相比会做设计的AI,更应该关注会用AI的设计师。
离不开平台力量
不过,想真正会用AI、擅用AI、玩转AI,光靠设计师一个人上网冲浪、埋头苦学,恐怕还差点意思。
好在借他山之石可以攻今日之玉:
往前回溯,无论是工业时代还是互联网时代,都非常依赖平台,平台的优势非常大。
AI 2.0时代,设计的重塑同样离不开平台的技术能力、应用场景、生态建设,也需要有一个平台来寻找和培养新一代设计师。
还得是叠buff的那种——
-
技术buff:提供强大的算力算法,有庞大的大数据支持
-
应用buff:丰富的AIGC应用场景
-
生态buff:全新的设计生态
于是在D20现场,阿里国际这边率先提供了一个这样的平台,这就是AI设计产品“堆友”教育版。
据介绍,堆友教育版是个AI设计教学教育管理平台,专为广大院校提供定制开发,和院校共同培养面向AI时代的人才,助力产业升级。
在人才孵化场景下,它的目的,是一站式解决AI设计的模型需求、工具需求、教学需求、算力需求。
那,先上手浅玩一下子堆友个人版呗。
AIGC文生图自然是基本功,在堆友里它叫**“AI反应堆”**,点进界面,包含prompt区、效果展示区、修改分发区。
Prmopt部分有必/非必选项、提示选项,颗粒度非常细。
整体感受,无论是小白和已经过了入门阶段的同学们,都能顺畅使用:
用如图所示一套提示词,生成效果是这样的↓
耗费20堆豆(堆友的算力货币),生成的图片中至少有四张保持了如下水准,还算挺ok。
目前,堆友每天都会免费赠送超200个堆豆。
回到主界面,AI反应堆下方就是打包了多个功能的**“AI工具箱”**。
打开就有浓厚的阿里味道,很多电商可用功能(doge)。
作为非设计行业从业者,量子位毫无畏惧直闯看起来最需要艺术细胞的创意融合功能。
共有两种方式完成AI融合,一是左侧的选择模式,二是右侧的三步融合渲染模式。
小白本白自然是体验了比较傻瓜的选择模式,还把效果参数设置在0.52(接近原图和自由发挥的中间值)。
花10堆豆,生成了2张最终图片。
效果有点香。
除此外,主页面上还有关注/推荐/作品/模型/笔记几个分栏,方便同学们各取所需。
意外的是,随便点进去一笔记都超详细!
如堆友嗡喵喵分享的《万图都可一键转3D|2D转3D拓展玩法》,谁看了不夸一句清晰明了?爱了。
据了解,堆友汇聚3000+AI模型,1000+案例课程,100万+创意灵感,已有超100万活跃用户,日均生成作品数量突破10万张。
而且背靠阿里国际的跨境电商经验,堆友教育版将推出大量电商设计课程。
目前的进展是,堆友已上线国内一流的20多所设计院校的高校合作专属频道,联合D20学生AI设计大赏征集了诸多优秀作品,让决定AI如何影响未来的主角们被更好的看见。
同时面向生态创作者和学生们,授予了百大堆友奖项。
其中,浙江大学、江南大学、广东工业大学、青岛黄海学院、海南软件职业技术学院等5所高校的设计学院,已经与堆友深度共建“人工智能+设计教育”产教融合新范式,将共建产教合作实验室、实训基地等。
就拿浙江大学来说吧,在与堆友的深度共建中,该校已经获得了浙江省教学创新大赛产教融合特等奖。
今年7月,双方还将共同主办亚洲创新设计工坊。
用青云的话说,这种模式叫AI设计产学新生态,学校和企业应该真正的把人才的标准打通。
其实核心要解决的一个问题就是,我们尝试在AI时代下能够打通学校跟企业之间对人才标准制定的gap。
我相信这个对于产学研的融合会是颠覆性的创新力量。
不与AI时代脱节
AI 2.0时代不是一年、两年的兴奋期,它会长期的伴随我们所在。
从产品设计到内容设计,再到用户体验设计,设计师们都在切身体验这场巨浪。
大家不得不正视和面对着飞速迭代的AI,以及日新月异的新要求——
因为设计师群体会不断扩大,设计师需要不断提高自己的水平;设计生态,不再只是设计师,也有“会设计的AI”;而随着生态规模扩大,设计师的定义会变得更纷繁复杂。
现在的从业者们,当然需要不停地学习、使用AI。
但其实,真正AI-Native,真正用AI改变世界的人,更可能是下一代人。
这也是为什么“设计人才的供、需在产业和学界之间出现了断裂”这个问题,值得被重视,亟待被解决的原因了。
只有做到按社会所需培养人才、按时代所需学习技术,才能让设计领域的人才源源不断涌入社会,滋养所需要设计的每一个角落。
值得注意的是,学会AI技能,不代表要被AI定义;拥抱AI,不代表设计领域没人跳新的舞了。
“设计从业者如果只是满足美工需求,拥抱AI后,设计出来的作品一定会趋同。”青云进一步解释拥抱AI的正确姿势,“拥抱AI,本质上是要求设计师有持续创新的能力。”
阿里国际搭建堆友,不是要独步设计生态平台,也不是要从设计院校手里攫取流量。
更多的,反而是希望进行AI 2.0时代的平台力量示范,利用平台拓展技术支持、制定人才标准、迭代设计范式,号召更多的人加入AI时代的设计行业生态建设中来。
简而言之,思路非常清晰:
是让设计师的产学不脱节,让设计师与时代不脱节。
一直听说阿里有一句话,叫“此时此刻非我(们)莫属”。
像设计从业者这样的所有被裹挟进AI 2.0的人们来说,“此时”就是AI的时代,“此刻”就是现在,“我们”就是产学界的各位。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。