背景与意义
护理临床决策是护理实践中的核心过程,涉及对患者健康状况的评估和最佳护理干预措施的选择。为了提高护理决策的准确性和效率,近年来人工智能(AI)技术逐渐融入这一领域。然而,随着医学信息的迅速增长以及个性化护理需求的增加,传统的护理决策支持系统面临着信息过载和难以跟上最新医学研究进展的挑战。大语言模型(LLMs)的出现为护理领域的智能决策提供了新的机遇。
LLMs,如ChatGPT和GPT-4,已经在多个自然语言处理任务中展示了其强大的能力,能够理解和生成复杂的语言。然而,LLMs在处理专业领域问题时仍面临挑战,特别是在涉及护理知识时。传统的大语言模型往往缺乏足够的领域特异性知识,并且在没有适当数据微调的情况下容易产生“幻觉”现象,即生成不准确或不真实的信息。为了克服这些限制,本文提出了将LLMs与本地护理知识库相结合的智能决策系统,以提高护理临床决策的准确性和可靠性。
方法
本研究的目标是通过整合大语言模型和本地知识库,开发出一种适用于护理临床决策的智能系统。研究方法主要分为三个步骤:问题分类、本地护理知识库的构建以及基于LLMs的护理临床决策系统的开发。
1. 决策问题分类
决策问题分类是将护理临床问题从输入文本中提取出来,并对其进行分类的过程。使用BERT模型对输入文本进行文本分类,以确定问题是否与护理相关。通过这一分类步骤,可以过滤掉不相关的问题,从而提高系统的专业性和准确性。对于与护理相关的问题,系统会进一步确定问题属于哪个具体的护理领域,如儿科、老年护理或产科等。
2. 本地护理知识库的构建
本地护理知识库的构建分为两类数据:文本数据和时序数据。文本数据来源于护理领域的文献、操作指南等,经过清理和格式化后纳入知识库。而时序数据则来自护理临床记录,包含关键的生理参数和临床指标。通过对这些数据进行清洗、分段和分类,形成一个结构化的、涵盖多个护理领域的本地知识库。
3. 护理智能决策系统的开发
基于前两个步骤,研究开发了一个将LLMs与本地知识库相结合的护理智能决策系统。该系统使用Word2vec将决策问题和知识库文本向量化,并通过Faiss相似度检索工具在知识库中找到与问题相关的内容,最后将这些内容与问题整合,并输入到大语言模型中生成最终的护理决策建议。
为了确保系统的隐私和安全性,所有模型和知识库均部署在本地服务器上,整个系统封装在Docker容器中,通过医院内网提供服务。此外,系统集成了LangChain框架,用于实现LLMs与本地知识库的交互,确保决策的智能化和实时性。
结果
本研究通过构建一个集成大语言模型和本地护理知识库的智能决策平台,成功提高了护理决策的准确性和效率。实验结果主要包括以下两部分:系统的视觉交互平台介绍以及临床决策性能的评估。
1. 视觉交互平台
护理智能决策系统部署在本地服务器上,并通过IP地址提供访问。平台提供了多种对话模式,如基于LLMs的对话、知识库+LLMs对话、搜索引擎对话等,以适应不同的决策需求。用户可以根据实际情况选择不同的对话模式,系统会根据输入的问题提供相应的护理决策建议。
2. 临床决策性能评估
为评估系统的性能,研究邀请了多个科室的护士长设计了临床护理场景下的决策问题,并对系统的回答进行评分。评分标准包括答案的准确性、逻辑性、信息完整性和可读性。通过多次重复实验,系统在处理儿科、老年护理等领域的问题时表现出了较高的准确性和稳定性。然而,在处理重症监护和急诊科的问题时,系统的表现略有波动,这可能是由于这些科室的临床环境更加复杂多变,超出了现有知识库的覆盖范围。
数据分析显示,系统在处理部分专业领域的问题时表现出较高的准确性和逻辑性,特别是在儿科和老年护理等相对稳定的临床场景下,系统的性能表现尤为突出。然而,对于复杂性较高的临床场景,如重症监护和急诊,系统的表现还有待进一步优化。
结论
本研究成功开发了一种整合大语言模型与本地护理知识库的智能决策系统,为护理临床决策提供了高效、可靠的支持。通过决策问题分类、本地知识库构建和LLMs的结合,系统能够为护理人员提供准确且多样化的护理建议。实验结果表明,该系统在多个护理领域中具有较高的应用潜力,特别是在信息丰富且相对稳定的临床场景中表现优异。
未来,本系统将在以下几个方面进一步优化:首先,扩充本地知识库的内容,涵盖更广泛的临床场景;其次,利用更先进的算法提高大语言模型的处理能力和决策精度;最后,探索跨学科合作的可能性,将该系统应用于更多的护理场景,进一步提升护理质量和效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。