如果你有一张24G显存的显卡可以轻松部署到本地使用,而如果你的显卡显存比较小,跑起来就会很卡。
考虑到大家由于技术/设备限制无法本地部署使用,今天来教大家一个非常简单的方法,直接调用API本地使用。
调用API的好处如下:
- 技术小白也能调用,避免本地复杂部署流程。
- 对电脑配置和系统均无要求,普通笔记本即可配置。
- 可以免费用QwQ的Plus版本,比32B满血版还要强。
- 调用速度非常快,可以达到40-50token/s。
目前每天可以白嫖100万token使用,足够大家日常访问了!想学的小伙伴抓紧跟我一起来看看吧!
阿里百炼平台调用API教程
1.首先打开百炼平台官网,注册后登录。(需实名认证)
https://www.aliyun.com/product/bailian
2.点击上方“开通服务”,勾选“同意”,确认开通。
耐心等待开通。
3.找到模型广场,在右上角搜索"QwQ“,找到“通义千问-QwQ-Plus”。
这个模型“通义千问-QwQ-Plus”是增强版,具体介绍如下:
通义千问QwQ推理模型增强版,基于Qwen2.5模型训练的QwQ推理模型,通过强化学习大幅度提升了模型推理能力。模型数学代码等核心指标(AIME 24/25、livecodebench)以及部分通用指标(IFEval、LiveBench等)达到DeepSeek-R1 满血版水平。
当然你也可以选择后面其它模型,看个人需求。
4.点击上图箭头标记的“API调用示例”,然后点击右上角“查看我的API-KEY”,创建“API KEY”,描述不用填写,直接点击“确定”,点击查看API KEY,复制下来。
详细图例教程如下:
5.API调用成功!
下载Cherry Studio
如果你有其它API配置工具也可以直接将API导入使用,chatwise、chatbox都可以。这里用Cherry Studio给大家做示例。
CherryStudio简介
一款支持多服务商集成的AI对话客户端,目前支持市面上绝大多数服务商的集成,并且支持多服务商的模型统一调度。
官网:https://cherry-ai.com
官网下载教程
打开官网后点击下载客户端
点击立即下载,或者使用下方网盘下载,下载后选择路径安装即可。
Cherry Studio 阿里百炼API配置教程
1.安装完成后打开软件,点击左下角设置。
2.找到“阿里云百炼”打开,粘贴上面复制的模型API KEY,也就是API密钥。
3.点击添加按钮,这里需要输入模型的ID。
4.我们输入“qwq-plus”,点击添加模型。
5.配置成功,回到主页面,点击上方将模型切换至新配置的模型。
6.测试
问题:9.11和9.9谁大
很简单的就推理成功了, 测试其它几个问题也都成功,推理能力还是很强的,可以比肩满血版Deepseek-R1。
生成速度:
生成速度非常的流畅,可以达到40-50token/s。
写作能力:
仿写的诗词还可以,仅用时9s,这速度和质量也是非常高了!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。