核心概述
这本主要介绍了一种增强的混合检索增强生成(RAG)系统,通过改进网页中的文本块和表格、添加属性预测器以减少幻觉现象、进行LLM知识提取器和知识图谱提取器工作,并构建了一个包含所有引用的推理策略,这一系列优化,显著提高了检索质量、增强了推理能力,并细化了数值计算能力。
01.研究背景
-
背景介绍: 这篇文章的研究背景是检索增强生成(RAG)框架,该框架通过整合外部知识库来增强大型语言模型(LLMs)的准确性和减少幻觉现象。
-
研究内容: 包括改进网页文本块和表格的处理,添加属性预测器以减少幻觉,进行LLM知识提取器和知识图提取器,并最终构建一个包含所有引用的推理策略。
-
相关工作: 形式验证、高效的训练方法等,但这些方法大多针对特定问题场景,不适合直接应用于CRAG任务。本文在前人研究的基础上,提出了一个集成多种策略的新颖设计。
02.研究过程及方法剖析
系统中有6个关键模块,包括(1)网页处理,(2)属性预测器,(3)数值计算器,(4)大语言模型知识提取器,(5)知识图谱模块, (6)推理模块。我们通过这些模块增强了系统在信息提取、减少幻觉、数值计算精度、高阶推理等方面的能力。此外,我们还对极端情况进行了特殊处理。
-
网页处理:使用Trafilatura和BeautifulSoup提取网页上的文本块和表格,并使用Blingfire将文本分句。文本块根据启发式规则进行分组,表格转换为Markdown格式。
-
属性预测器:开发了属性预测器,评估每个问题的类型和事实变化率,以优化所有问题类型的性能。使用了上下文学习和支持向量机(SVM)两种方法进行分类。
-
数值计算器:通过提示技术鼓励大型语言模型生成有效的Python表达式,并将实际数值计算任务委托给外部Python解释器。
-
LLM知识提取器:开发了LLM知识提取器,利用大型语言模型的知识丰富的响应作为参考材料,增强推理能力。
-
知识图谱模块:使用手动规则从查询中提取实体,并生成查询。由于时间和资源限制,最终版本回归到基线方法。
-
推理模块:设计了提示模板,让LLM从所有参考材料中进行推理,得到最终答案。控制了推理路径和输出格式,并处理了许多角落案例。
【处理极端情况】
除了上面提到的主要模块之外,我们还处理了很多极端情况,包括**(1)识别无效问题;(2)鼓励模型对不确定的答案回答“我不知道”,以减少幻觉;(3)对不符合指令格式的输出进行处理。** 接下来,我将介绍我们处理这些极端情况的设计。
-
无效问题。有些问题的前提是错误的,这意味着查询与事实相矛盾。对于这些问题,模型应该输出“无效问题”。为了识别此类问题,模型需要仔细分析所提供的参考文献。我们在附录C.5所示的推理提示中添加特殊规则
-
减少幻觉。我们采用两种方法来减轻幻觉:属性预测和推理。我们发现,时变问题(被属性预测器标记为动态)对于我们的系统来说很难,我们没有足够的时间和资源来改进它们。所以我们手动让系统对这些问题回答“我不知道”。此外,我们在推理模块中添加了一些规则和提示工程技术,让模型在不确定时回答“我不知道”。最终,我们将系统配置为专门输出“我不知道”,并且在初始响应中包含“我不知道”时避免添加任何其他单词。
-
格式不正确。由于我们没有对推理输出进行约束采样,因此模型有可能输出无法解析的答案。为了处理这种情况,我们设计了一个备份摘要代理,在解析失败时根据推理模块的输出准确、简洁地总结最终答案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。