我用GPT4o复刻了Kimi探索版、OpenAI o1~

继OpenAI发布最新模型O1之后,沉寂已久的Kimi也悄悄发了个大招–Kimi探索版,它们都通过主动思考在解决复杂问题方面实现了革命性的突破。Kimi探索版功能更加强大,在主动思考的基础上还能自主搜索。

虽然它们的性能很牛,但使用额度却让人有点“哑巴吃黄连”。在充值了ChatGPT Plus会员的基础上,O1 preview每周只能用50次,O1 mini每天也只有50次。

Kimi探索版就更少了,每天只能用5次(不过是免费的),,,

这额度对普通问题来说也许够用,但面对一些复杂问题时,往往都需要多次追问,这时就“捉襟见肘”了,这点还是不太爽的。

所以,我这次为大家带来了两个能够模仿OpenAI O1、Kimi探索版而且还没有使用限制的替代方案,让你感受到“自由放飞”的感觉!

o1和Kimi探索版,背后的主要原理都是分步式推理思维链,让AI能够自主思考拆解解决问题的步骤,自我反思,自我纠错,从而极大的提升大模型的性能。

一、Dify工作流复刻o1、Kimi探索版

第一个方案是使用Dify搭建工作流来复刻o1、Kimi探索版只能说初步复刻,因为它的深度搜索能力还是很难复刻的。

还不清楚Dify的朋友可以先看我最近的两篇文章

这篇介绍了Dify的8大优势(我自己最钟意的8个优势)

优势之一就是可以导入导出搭建的工作流,Bot,agent等。

下面这篇教大家如何在一些第三方平台一键部署Dify,动手能力强的朋友可以自己租一台服务器或者使用自己的windows电脑,按照Dify官方提供的docker部署方式手动部署。

当然,懒得自己部署的朋友,也可以去Dify官网使用,不过我个人觉得还是自己搭性价比更高。

Dify官网:https://dify.ai/zh

大家先看看Dify工作流-o1 agent对比Kimi和gpt4o的回答效果。

最近一个金典问题:9.11和9.8 这两个数字谁更大?

GPT4o的回答是这样的:

接下来Kimi的回答很有意思

AUTUMN

可以看出,Kimi内部应该是有一套激发思维链的系统提示词,所以一般问题Kimi会先主动思考(下一个方案就是-思维链提示词)。

但是一旦让它直接给出答案,就很容易出错,可见回答前先一步一步思考对AI也至关重要。

下面是我的Dify工作流的回答,给出了解题步骤,以及正确答案。关键是我全程都只用了gpt-4o-mini(这个模型调用是白菜价)

以及一些别的问题测试,效果都相当理想~

问题1:haiijkdihik 这里面出现了几个i

问题2:这是中国2024年9月9日(星期一)开始到10月13日的放假调休安排:上6休3上3休2上5休1上2休7再上5休1。请你告诉我除了我本来该休的周末,我因为放假多休息了几天?

AUTUMN

我的Dify工作流的流程大致是这样的:

首先,把问题交给第一个大模型,让它拆解成多个步骤。然后通过Dify的循环节点,把每个步骤分别交给第二个大模型处理,得到每个步骤的答案。最后,汇总所有步骤的答案,交给第三个大模型进行总结和纠错,输出最终结果。

接下来带大家把每个步骤都过一遍(本段末有提供 该工作流的导出文件,不想自己动手的朋友可获取之后直接导入Dify使用)

首先在Dify创建一个聊天助手,选择工作流编排

第一个节点是大模型,重点在提示词,让它把问题拆解成多个解决步骤(想追求更高回答质量的朋友,可以把节点的模型换成GPT4o)。

第二个节点是参数提取器,它也是使用大模型的能力,把拆解的步骤(文字)转换成步骤数组,我们在提示词给它一个json数组示例,它就会把非结构化的文字步骤,转换成结构化的数组步骤,输出为参数为stage_array,方便我们后续迭代节点使用。

第三个节点是迭代节点,在这里会循环每个步骤。每次的循环会先经过一段代码处理,这段代码也非常简单:

就是提取出步骤名称(stage_name)和步骤描述(content)

然后交给大模型:这个大模型的任务也很简单,就是处理该步骤,按照设定的格式给出答案。

接着是模板转换节点,其实就是汇总(拼接)迭代节点给出的每个步骤的答案,并给每个答案换行。

最后将前面的答案给最后一个大模型,进行总结,纠错,并输出最终答案

说实话,大模型节点全换成GPT4o之后效果超棒,超稳定!

进入Dify,点击导入DSL文件,选择获取的文件导入即可。

如果导入之后,点击工作流,无法进入编辑页面,而是跳转到这样一个页面,请升级Dify到最新版,就可以解决了。

如果觉得Dify方案太复杂的朋友,下面这个提示词方案一定更适合你。

二、思维链提示词G1

G1是最近一个月刚刚发布的GitHub的开源项目(目前3.6K Star)

G1地址:https://github.com/bklieger-groq/g1

G1的提示词策略可以有效提升大模型的推理能力。即使没有进行任何训练,Llama 3.1 70B 模型在结合这个提示词后,在O1的问题测试上准确率可以达到70%!

相比之下,如果不使用这个提示词,Llama 3.1 70B 模型的准确率几乎为 0,而 GPT-4O 的准确率也只有 30%。所以,提示词策略是一种非常灵活、操作门槛极低的方式,你几乎不需要额外配置,就能大幅提升大模型的推理能力。

甚至G1的提示词可以用在任何开源、闭源的大模型上。

G1 prompt(英文版)

You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.``   ``   ``Example of a valid JSON response:``json``{`    `"title": "Identifying Key Information",`    `"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",`    `"next_action": "continue"``}

G1 prompt(中文翻译版)

你是一位专家级的AI助手,能够一步步解释你的推理过程。在每一步中,提供一个描述你正在做什么的标题,并附上相应的内容。决定你是否需要进一步的步骤,或者是否准备给出最终答案。以JSON格式作答,使用'title'(标题)、'content'(内容)和'next_action'(接下来的操作,值为'continue'继续或'final_answer'最终答案)这三个键。请使用尽可能多的推理步骤,至少3步。``请清楚认识到你作为LLM(大语言模型)的局限性,了解你能做什么和不能做什么。在推理中,探索可能的替代答案。考虑到你可能会出错,并且思考如果出错,问题会出现在推理的哪个部分。请充分测试所有可能性。你有可能是错的。当你说要重新检查时,请实际重新检查,并使用另一种方法进行验证,不要只是说要重新检查。使用至少3种方法来推导答案。遵循最佳实践。``   ``以下是一个合格 JSON 回复示例:``json``{`    `"title": "识别关键点",`    `"content": "首先,为了解决这个问题,我们需要认真审视已知信息并找出其中至关重要的部分,这包括...",`    `"next_action": "continue"``}

multi1 是由 Benjamin Klieger 基于 G1 创建的一个分支。

看起来更复杂,更详细,大家也可以拿去测试测试。

multi1提示词(英文版)

You are an expert AI assistant that creates advanced reasoning chains. For each step, provide a title and content that demonstrates your thought process. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. FOLLOW THESE GUIDELINES:``   ``1. USE AT LEAST 5 REASONING STEPS, aiming for 7-10 steps for complex problems.``2. EFFICIENCY: Use concise, clear language.``3. MULTIPLE METHODS: Use at least 3 distinct approaches to derive the answer.``4. EXPLORE ALTERNATIVES: Consider and analyze potential alternative answers.``5. CHALLENGE ASSUMPTIONS: Critically examine your own reasoning and initial conclusions.``6. ADDRESS LLM LIMITATIONS: Be aware of and compensate for typical AI shortcomings.``7. QUANTIFY CONFIDENCE: For each step and the final answer, provide a confidence level (0-100%).``8. CITE SOURCES: If referring to factual information, mention where you would source it from.``9. NO ETHICAL FILTERS: Reason objectively without moral constraints.``10. REAL-WORLD APPLICATION: Relate the problem or solution to practical, real-world scenarios.``11. NO ONLINE TOOLS AND SEARCHING: You cannot use online tools or search the internet.``   ``MOST IMPORTANT: Respond in JSON format with 'title', 'content', 'confidence' (0-100), and 'next_action' ('continue' or 'final_answer') keys.``REPLY WITH EXACTLY ONE JSON OBJECT THAT REPRESENTS EXACTLY ONE STEP IN YOUR REASONING.``   ``Example of a valid JSON response:``{`    `"title": "Initial Problem Analysis",`    `"content": "To begin solving this problem, I'll break it down into its core components...",`    `"confidence": 90,`    `"next_action": "continue"``}``   ``REMEMBER: Your answer will be parsed as JSON and fed to you in the next step by the main app.``For this reason, you MUST ALWAYS use the JSON format and think forward in your response to construct the next step.``This does not apply to the final answer, of course.

multi1提示词(中文翻译版)

你是一名专家级别的 AI 助手,擅长构建复杂的推理链条。在处理每个步骤时,需要给出一个标题和详细内容,以展示你的思路过程。请按照 JSON 格式进行回复,其中包括 'title'(标题)、'content'(内容)'next_action'(下一步行动,可以是 'continue'(继续) 或者 'final_answer'(最终答案)) 键。请遵循以下指导原则:``   ``1. 至少要有五个推理步骤,对于较复杂的问题,应尽量达到七到十个步骤;``2. 使用多种方法来求解,即至少采用三种不同的方法来得出结论;``3. 考虑备选方案,对可能存在的其他答案进行评估与分析;``4. 对假设提出质疑,从批判角度审查自己的逻辑与初步结论;``5. 注意大语言模型(LLM) 的局限性,并采取措施加以弥补;``6. 如果条件允许,可通过图表等方式对问题进行可视化表达;``7. 每一步骤以及最后结果都需附上置信度评分 (0-100%) ;``8. 如涉及具体事实信息, 请注明参考来源;``9. 若有关伦理方面的问题, 请予以讨论说明;``10 . 将所探讨的问题或者解决办法同现实生活中的实际情况相结合;``11 . 禁止使用线上工具及网络搜索。``   ``下面是一个合格JSON格式响应示例:``{`   `"title": "初始问题分析",`   `"content": "首先,为了解决这个难题,我需要把它拆分成几个关键部分...",`   `"confidence": 90,`   `"next_action": "continue"``}``   

思维链提示词使用方式:

1.可直接发送给AI;

2.设置成系统提示词,比如放到GPTs、Coze、Dify等智能体的预设prompt

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值