随着大语言模型(LLM)的持续演进,RAG(检索增强生成)技术也在飞速发展。从早期的简单文档检索,到如今与 Agent、多模态、图结构等深度结合,RAG 正逐渐变得更智能、更具推理能力。
今天,我们整理了 11 种最新的 RAG 类型,从协同式、因果式、到图结构增强,为你打开通往下一代智能问答系统的大门。
🚀任务规划 + RAG:InstructRAG
InstructRAG 构建了一个基于 图结构的多智能体系统,包括:
- 📌 RL Agent:探索更广泛的任务空间
- 📌 Meta-Learning Agent:增强泛化能力
让 RAG 更加适合复杂任务规划。
📄 论文:
https://huggingface.co/papers/2504.13032
🤝协同智能:CoRAG
在 多个客户端之间进行协作检索与生成,共享知识库,实现 联邦学习场景下的问答增强。
📄 论文:
https://huggingface.co/papers/2504.01883
🔁推理控制:ReaRAG
通过 Thought → Action → Observation 循环,控制每一步是否需要检索,减少无意义的推理,提升准确率。
📄 论文:
https://huggingface.co/papers/2503.21729
🌲搜索加持:MCTS-RAG
结合 蒙特卡洛树搜索(MCTS),即使是小模型也能处理复杂、知识密集的任务。
📄 论文:
https://huggingface.co/papers/2503.20757
🧩问题类型识别:Typed-RAG
识别问题类型(比如比较、经验分享、辩论),将复杂问题 自动拆分成子任务,再逐步回答,尤其适用于非事实型问答。
📄 论文:
https://huggingface.co/papers/2503.15879
🤖辩论式多智能体:MADAM-RAG
多个模型 围绕同一问题展开辩论,通过多轮交互提出各自观点,最终由汇总模块 去噪并生成权威答案。
📄 论文:
https://huggingface.co/papers/2504.13079
🏗️多模态 & 多智能体:HM-RAG
三个智能体协同工作:
- 💡Query Agent:分解问题
- 📚Retrieval Agent:从文本/图/网页中检索
- 🧠Synthesis Agent:整合与精炼答案
📄 论文:
https://huggingface.co/papers/2504.12330
🔄因果图加持:CDF-RAG
基于因果图进行多跳推理,支持动态反馈机制,确保生成内容沿着“因果路径”推理展开,提升解释性和准确性。
📄 论文:
https://huggingface.co/papers/2504.12560
🧮异构图结构:NodeRAG
采用设计良好的异构图,将图算法与 RAG 无缝集成,在多跳问答中 超越 GraphRAG 与 LightRAG,准确性提升明显。
📄 论文:
https://huggingface.co/papers/2504.11544
🧠知识粒度分层:HeteRAG
支持多粒度知识表示,检索时使用粗粒度语义块,生成时再细化为精炼知识,配合 自适应提示调优(Prompt Tuning),兼顾性能与效率。
📄 论文:
https://huggingface.co/papers/2504.10529
🔗高阶关系建模:Hyper-RAG
基于 超图(Hypergraph),同时捕捉知识之间的双边与多边关系,尤其适用于医疗等高风险领域,减少幻觉,提升精度。
🌀 轻量版本还可将检索速度提高 2 倍!
📄 论文:
https://huggingface.co/papers/2504.08758
✅总结 & 展望
🔍 新一代 RAG 正在以更智能、更结构化的方式,成为 LLM 在推理、问答、规划领域的“超级大脑”。
📌 如果你是从事大模型应用的开发者、研究者,这些 RAG 的演进路径无疑提供了大量创新灵感。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。