大模型现在如日中天,它们能帮我们提高做事的速度和质量。无论是个人还是公司,大家都在用智能技术来让客户更满意。以哈啰集团的大模型AI在场景里的应用,让大家更清楚地了解公司是怎么用这些大模型的,它们用在哪些地方,背后的技术又是啥样的。
一、哈啰集团AI应用最佳实践的全景揭秘
努力提高效率是每个企业的动力源泉,而大模型在哈啰集团的应用正是一种高效运转的展现。单车业务、助力车、打车以及租电动车等多个领域,无不展示了大模型技术对提升公共交通效率的重要性。
例如单车业务覆盖了500多个城市,这意味着通过大模型的支持,骑行的总里程可以达到420亿公里。如同海量数据一样,大模型可以与城市生活服务相配合,使得通勤变得更加智能与环保。
从减少碳排放190万吨的成就来看,这显然是科技驱动下绿色出行的新纪元,而这些成绩的取得都离不开大模型在底层的深度嵌入与广泛学习。通过将数据最优匹配,大模型无疑是推动城市绿色交通的一块核心驱动板。
基于此,哈啰集团的整体布局:
哈啰集团利用大模型技术,通过Copilot和Agent两大平台,快速构建应用,提升内部效能和业务赋能。
-
Copilot:提升办公、编程、BI、运营和客服等内部效能。
-
Agent:直接赋能业务,提升GMV,涵盖售前、售中和售后环节。
-
AIGC赋能营销,包括文案、图片和视频的生成
二、模型基础设施与支持平台的构建
哈啰集团的模型架构可以分为以下几个层次:
2.1 业务层
包括单车、助力车、顺风车、打车、租车、数科和街猫等本地出行生活服务业务。
2.2 大模型平台层
-
模型训练:进行模型的训练过程。
-
模型评测:对训练好的模型进行性能评测。
-
模型部署:将模型部署到生产环境中。
-
模型服务监控:监控模型的运行状态和服务性能。
-
应用编排:管理和调度不同的应用服务。
-
应用服务:提供具体的应用服务。
2.3 大模型基座:
包括通义千问、月之暗面、百川、豆包等多个大模型,作为整个架构的基础。
2.4 Agent模式层
包括Tools(工具)、Self-Correction(自我修正)、Planning(规划)、Multi-Agent(多代理)四种模式,用于不同的业务场景和需求。
2.5 技术实现层
模型加速框架与Benchmark:用于优化模型的推理速度和性能。 主备链路+检活机制:确保服务的高可用性。 自研配额智能化管控机制:管理资源配额,优化资源使用。
2.6 多云基础设施层:
包括计算、网络、存储、数据库和安全等基础设施,为上层服务提供支持。
2.7 业务应用层:
包括内网问答、研发答疑、监控平台答疑、钉钉群答疑等,以及AI生成测试用例、数据分析Copilot、智能客服和判责等应用。
2.8 AIGC赋能层:
包括营销文案、营销图片、短视频素材的生成和管理,以及数字人、数字宠物、国学等生态应用。
整个架构体现了哈啰集团在大模型技术应用上的全面布局,从基础设施到业务应用,再到AI赋能,形成了一个完整的生态系统。通过这种架构,哈啰集团能够实现高效的模型训练、部署和服务监控,同时通过Agent模式和AIGC技术,提升业务的智能化水平和用户体验。
三、哈罗集团的大模型应用案例
3.1 AI赋能的运营和客服流程优化
在哈啰集团,AI不仅为客服提供即时解答,还能够在售前、售中、售后的各个阶段,提升整体客户满意度。
从意图理解到多轮对话管理,再到售后解决方案的精准匹配,AI不仅是一个工具,更是客服工作的伙伴。客服在应对客户询问时,AI可以通过语义分析快速解答用户疑问,并在涉及复杂问题时作出精准的预判和责任分配。而且,智能质检的应用确保每一次客户交互都能在高质量标准下进行,使哈啰集团的客服系统日益接近完美体验。这种基于AI的客服优化,不仅让客户感到贴心,也极大地提高了客服团队的处理效率。
3.2 智能化营销策略的实施与效果
传统营销模式很容易疲软,而随着AI的引入,智能化营销策略开始显现出惊人的新潜力。在哈啰集团,通过AIGC(AI生成内容)来撰写文案,生成图片和视频,将创意从限制中解放出来。
因而营销文案的CTR提高了3.76%,CVR的提升率达到5.76%,这些数字背后,是AI在帮助营销团队精准打击潜在受众。通过自动化的文案和多样化样式的Banner生成,哈啰集团的营销策略不仅节省了人力成本,还达到了更大的市场渗透率。创新性的短文案和个性化影像,它们汇聚成大模型早已预见的目标,凭借精致与精准双管齐下,这一切使得营销效果显著提升。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。