大语言模型虽能生成文本,但输出可能不符合用户需求,强化学习可改善这一情况。本文梳理该领域研究,帮助研究者了解现状与挑战,推动技术发展,使大语言模型更好地服务用户。
本文系统回顾了强化学习增强大语言模型领域的研究现状,详细阐述了强化学习基础知识、多种流行的强化学习增强大语言模型,深入探讨了 RLHF 和 RLAIF 两种基于奖励模型的强化学习技术以及直接偏好优化 DPO 方法,分析了这些方法面临的挑战,如 RLHF/RLAIF 的分布外、可解释性、安全性和评估问题,DPO 的安全和变体问题等,并指出了进一步改进的方向。
摘要&解读
本文综述了利用强化学习(RL)增强大语言模型(LLM)这一快速发展领域的研究。强化学习技术使大语言模型能够根据输出质量的反馈(以奖励的形式)来提高性能,从而生成更准确、连贯且符合上下文的响应。在这项工作中,我们系统地回顾了强化学习增强大语言模型的最新知识状态,试图整合和分析该领域迅速增长的研究,帮助研究人员了解当前的挑战和进展。具体而言,我们(1)详细介绍了强化学习的基础知识;(2)引入了流行的强化学习增强大语言模型;(3)综述了两种广泛使用的基于奖励模型的强化学习技术:人类反馈强化学习(RLHF)和人工智能反馈强化学习(RLAIF);(4)探讨了直接偏好优化(DPO),这是一组绕过奖励模型直接使用人类偏好数据使大语言模型输出与人类期望对齐的方法。我们还将指出现有方法的当前挑战和不足,并提出一些进一步改进的途径。本工作的项目页面可在我们的最新代码库中找到。
-
研究背景: 大语言模型预训练后交互能力有问题,监督微调有局限,强化学习被引入来解决这些问题,使大语言模型输出与人类偏好更好对齐。
-
研究贡献: 详细梳理了强化学习增强大语言模型领域的多种技术方法,包括不同模型采用的技术、RLHF 和 RLAIF 的改进以及 DPO 及其变体等,为后续研究提供全面参考与改进方向。
-
实验结果: 文中提及一些模型在不同基准测试中的表现,如 Gemini Ultra 在多个基准测试取得优异成绩,一些模型使用特定方法后在 AlpacaEval 等基准上得分提升等,但未系统总结所有技术的实验结果。
1引言
大语言模型(Jiang等人,2023;OpenAI,2023;Dubey等人,2024)是在大量文本数据上进行预训练的复杂语言模型,能够对各种输入产生连贯流畅的响应。然而,这些预训练大语言模型的交互能力可能不一致,有时会产生虽然在技术上正确,但可能对用户有害、有偏差、有误导性或与用户需求无关的响应。因此,在将预训练大语言模型有效地应用于各种自然语言任务之前,使其输出与人类偏好对齐至关重要(Wang等人,2023b;Wan等人,2023;Sun等人,2023c,b;Giray,2023;Zhang,2023;Long,2023;Sun,2023;Gao等人,2023;Paranjape等人,2023;Sun等人,2023a;Diao等人,2023;Wang等人,2023a;Zhang等人,2023b;Sun等人,2023d;Liu等人,2024d;Yao等人,2024;Liu等人,2024c;Lee等人,2024;Kambhampati,2024;Wang等人,2024c)。
以前,使预训练大语言模型输出与人类偏好对齐的一种广泛采用的方法是监督微调(SFT)(Hu等人,2021;Mishra等人,2021;Wang等人,2022;Du等人,2022;Dettmers等人,2023;Taori等人,2023;Zhang等人,2023a;Chiang等人,2023;Xu等人,2023;Peng等人,2023;Mukherjee等人,2023;Li等人,2023;Ding等人,2023;Luo等人,2023;Wang等人,2024d;Zhou等人,2024)。这种方法在(指令,答案)对上进一步训练大语言模型,其中“指令”代表给模型的人类提示,“答案”是遵循指令的目标输出。监督微调有助于引导大语言模型产生符合特定特征或领域知识的响应,使人类能够与大语言模型进行交互。尽管有效,但监督微调存在局限性:在训练过程中,模型被限制学习我们提供的特定答案,像困惑度(PPL)这样的指标会对同义词的使用进行惩罚。一方面,这可能会阻碍大语言模型的泛化能力,因为写作和总结等任务有多种有效的表达方式。另一方面,由于训练过程中没有直接纳入人类反馈,可能会导致在与人类偏好对齐方面表现不佳。
为了缓解上述问题,在使大语言模型输出与人类偏好对齐时采用了强化学习(RL),这可以分解为三个步骤:(1)在微调之前,训练一个奖励模型(或奖励函数)来近似人类偏好并对不同的大语言模型输出进行评分;(2)在每次微调迭代中,给定一个指令,大语言模型生成多个响应,每个响应都由训练好的奖励模型进行评分;(3)最后,使用策略优化(一种强化学习优化技术)根据这些偏好分数更新大语言模型的权重以改进预测。用强化学习微调大语言模型同时解决了上述问题。一方面,强化学习不是局限于学习特定答案,而是根据各种偏好分数调整大语言模型,奖励任何有效、表达良好的响应。另一方面,奖励模型旨在近似人类偏好,能够直接基于人类偏好进行训练,并培养大语言模型令人印象深刻的创造力。
在本文中,我们整理了大语言模型中强化学习的最新知识状态,试图整合和分析该领域迅速增长的研究,帮助研究人员了解当前的现状、挑战和进展。具体来说:
-
第2节介绍了强化学习(RL)的基础知识和关键术语,并概述了如何将强化学习流程应用于大语言模型。
-
第3节介绍了通过强化学习增强的流行且强大的大语言模型。
-
第4节概述了人类反馈强化学习(RLHF)的过程,这是一种将强化学习与人类反馈相结合的训练方法,使大语言模型与人类价值观、偏好和期望对齐。
-
第5节综述了人工智能反馈强化学习(RLAIF)的研究,它通过利用人工智能系统为正在训练的大语言模型输出提供反馈,为RLHF提供了一种有前途的替代或补充方案,在可扩展性、一致性和成本效益方面具有优势。
-
第6节分析了与RLHF和RLAIF相关的挑战。
-
第7节讨论了直接偏好优化(DPO)的研究,这是一系列绕过奖励模型直接利用人类偏好数据使大语言模型输出与人类期望对齐的方法。
-
第8节总结了当前的挑战并讨论了进一步改进的机会。
2基础知识:用于大语言模型的强化学习
在本节中,我们首先详细介绍强化学习(RL)的基础知识和关键术语,然后概述如何将强化学习流程应用于大语言模型。
2.1强化学习基础
强化学习(RL)是机器学习中的一种关键方法,侧重于智能体如何与环境交互以最大化累积奖励。与依赖标记数据的监督学习和揭示未标记数据模式的无监督学习不同,强化学习强调通过试错的直接反馈进行学习。下面,我们依次描述强化学习的基本定义和一般流程。
2.1.1基本定义
这里,我们使用图1中的训练示例来说明强化学习的完整过程。在这个示例中,我们的目标是训练一个机器人从正方形的左下角移动到右上角。此外,每个网格单元都有一个奖励分数,我们的目标是最大化机器人的总分数。在深入研究训练过程之前,我们首先介绍一些相关术语:
-
智能体:智能体是我们训练以做出正确决策的实体。在这个例子中,我们的目标是训练机器人做出移动决策,所以机器人就是智能体。
-
环境:环境是智能体与之交互的外部系统。对于我们的示例,由于被训练的机器人(智能体)在网格内移动,所以网格就是环境。
-
状态:状态表示智能体在每个时间的位置。例如,一开始,在时间,机器人(智能体)从左下角开始,所以时间的状态就是左下角,用坐标表示。
-
动作:动作表示智能体在每个时间在环境中可用的可能选择。例如,在开始时,在时间,机器人(智能体)可以选择向右或向上移动,所以这两个动作在时对智能体是可用的。
-
奖励:奖励是环境根据智能体在每个时间采取的动作提供的信号或反馈。例如,在时间,机器人(智能体)向右移动会获得分的奖励,向上移动会受到分的惩罚。
-
策略:策略是一组决策策略,帮助智能体在每个时间选择一个动作。在实践中,在时间,策略表示一个概率分布,指导机器人(智能体)向右或向上移动以最大化其累积奖励。
2.1.2强化学习的一般流程
我们已经定义了强化学习中使用的关键术语,在本节中,我们将继续详细介绍强化学习的一般流程。
如图1所示,一般的强化学习(RL)流程可以表示为一个马尔可夫决策过程(MDP)。形式上,智能体从初始状态开始,在每个时间步,它根据当前状态选择一个动作。作为响应,环境转换到一个新状态,智能体接收一个奖励。这个循环不断继续,智能体的目标是最大化随时间累积的奖励。
映射到图1中的具体示例,在初始时间,机器人从左下角(用位置(状态)表示)开始。随着时间的推移,在每个时间步,机器人选择一个动作(要么向上移动要么向右移动)。这个动作使机器人从当前位置转换到新位置,同时获得一个奖励。这个移动和奖励收集的循环一直持续,直到机器人到达右上角的期望位置(状态),实现最大累积奖励的目标。
2.2用于大语言模型的强化学习
我们上面概述了强化学习的一般框架;现在我们将深入研究使用强化学习微调大语言模型的过程。这种方法旨在使大语言模型与期望的行为对齐,提高其性能,并确保其输出既有效又可靠。
在强化学习(RL)中,有六个关键组件:智能体、环境、状态、动作、奖励和策略。为了将强化学习应用于微调大型语言模型(LLM),第一步是将这些组件映射到LLM框架中。大语言模型非常擅长下一个标记预测,它们将一系列标记作为输入,并根据给定的上下文预测下一个标记。从强化学习的角度来看,我们可以将大语言模型本身视为策略。当前的文本序列代表状态,基于此状态,大语言模型生成一个动作——下一个标记。这个动作更新了状态,创建了一个包含新添加标记的新状态。在生成完整的文本序列后,使用预训练的奖励模型通过评估大语言模型输出的质量来确定奖励。
图2展示了Ouyang等人(2022)提出的用于大语言模型的具体强化学习框架。Ouyang等人(2022)从通过监督学习训练的指令调整模型开始,使其能够对人类指令生成结构化响应。然后,Ouyang等人(2022)应用以下两个步骤:步骤1:收集比较数据并训练奖励模型。Ouyang等人(2022)收集指令调整模型输出之间的比较数据集,其中标注者表明对于给定输入他们更喜欢哪个输出。然后,使用收集的数据集训练一个奖励模型(RM)来预测人类偏好的输出。步骤2:使用近端策略优化(PPO)算法针对奖励模型优化策略。Ouyang等人(2022)利用奖励模型的输出作为标量奖励,并使用PPO算法(Schulman等人,2017)微调指令调整模型以优化此奖励。
3通过强化学习增强的流行大语言模型
最近具有强大能力的流行大语言模型几乎都在训练后过程中利用强化学习(RL)来进一步提高它们的性能。这些模型采用的强化学习方法通常可以分为两大类:1. 传统的强化学习方法,如人类反馈强化学习(RLHF)和人工智能反馈强化学习(RLAIF)。这些方法需要训练奖励模型,涉及复杂且往往不稳定的过程,使用近端策略优化(PPO)(Schulman等人,2017)等算法来优化策略模型。像InstructGPT(Ouyang等人,2022)、GPT - 4(OpenAI,2023)和Claude 3(Anthropic,2024)等模型遵循这种方法。2. 简化方法,如直接偏好优化(DPO)(Rafailov等人,2024)和奖励感知偏好优化(RPO)(Adler等人,2024)。这些方法摒弃了奖励模型,提供了一种稳定、高效且计算成本低的解决方案。像Llama 3(Dubey等人,2024)、Qwen 2(Yang等人,2024a)和Nemotron - 4 340B(Adler等人,2024)等模型遵循这种方法。在本节中,我们将对每个模型进行详细描述,首先简要概述这些强化学习增强的大语言模型,然后解释强化学习在它们的训练后过程中是如何应用的。这些强化学习增强的大语言模型的概述如表1所示。
3.1 InstructGPT
InstructGPT(Ouyang等人,2022)是OpenAI从GPT - 3(Brown等人,2020)微调得到的一系列语言模型,使用人类反馈更好地与人类意图对齐。该系列包括具有1.3B、6B和175B参数的模型。该模型首先使用从OpenAI API收集或由标注者编写的提示以及相应的标注者演示通过监督学习进行微调,然后使用人类反馈强化学习(RLHF)进一步优化。人类评估表明,InstructGPT的输出比GPT - 3更受青睐。值得注意的是,1.3B参数的InstructGPT模型比175B的GPT - 3更受青睐,尽管其参数少了100倍。此外,InstructGPT在真实性方面有所提高,有害输出减少,在公共自然语言处理数据集上的性能损失最小。
在应用强化学习(RL)之前,作者从监督微调(SFT)模型初始化一个6B的奖励模型(RM),并移除最终的解嵌入层。这个RM使用标注者排名的比较数据进行训练。在RL阶段,他们使用PPO算法(Schulman等人,2017)微调SFT模型以优化RM的标量奖励输出。为了解决在公共自然语言处理数据集上的性能回归问题,他们尝试将预训练梯度与PPO梯度混合,得到了称为PPO - ptx的模型。
3.2 GPT-4
GPT - 4(OpenAI,2023)是OpenAI开发的一种大型多模态模型,能够处理图像和文本输入并生成文本输出。它在理解和生成自然语言方面表现出色,特别是在复杂和微妙的场景中。评估表明,GPT - 4在一系列人类设计的考试中表现异常出色,通常超过大多数人类考生。此外,它优于早期的大型语言模型和大多数最先进的系统,这些系统通常依赖于特定基准的训练或手动设计的解决方案。
GPT - 4在训练后对齐阶段利用了RLHF方法,如我们在第3.1节中描述的InstructGPT(Ouyang等人,2022)中所概述的那样。为了更有效地在更精细的层面上引导模型做出适当的拒绝,作者进一步使用一个零样本GPT - 4分类器作为基于规则的奖励模型(RBRM)。这个RBRM在训练提示的一个子集上使用PPO微调时,为GPT - 4策略模型提供额外的奖励信号。RBRM以提示(可选)、策略模型的输出和人类编写的规则(例如,多项选择形式的一组规则)作为输入,然后根据规则对输出进行分类。通过这种方法,GPT - 4因拒绝有害内容和对已知安全提示做出适当响应而获得奖励。
3.3 Gemini
Gemini(Team等人,2023)是谷歌开发的一系列先进的多模态模型,以其出色的能力而著称。初始版本Gemini 1.0有三种尺寸——Ultra、Pro和Nano,从性能上从大到小排列。每种尺寸都针对特定的计算约束和应用需求进行了定制。值得注意的是,最强大的变体Gemini Ultra在32个基准测试中的30个取得了最先进的结果,并且是第一个在MMLU(Hendrycks等人,2020)上达到人类专家水平性能的模型,同时在所有20个多模态基准测试中创造了新记录。
Gemini在训练后过程中利用了一个优化的反馈循环,收集人类 - 人工智能交互以推动关键性能领域的持续改进。在训练后的RLHF阶段,采用了一种迭代方法,其中强化学习(RL)逐步增强奖励模型(RM)。同时,RM通过系统评估和数据收集不断进行优化。这种动态相互作用促进了RL和RM的持续进步,随着时间的推移导致性能逐步提高。
3.4 InternLM2
InternLM2(Cai等人,2024)是上海人工智能实验室开发的一系列开源大型语言模型,有1.8B、7B和20B三种尺寸。由于创新的预训练和优化技术,该模型在六个维度和30个基准测试中表现出优异的性能,包括长上下文建模和开放式主观评估。
为了进一步增强对齐,InternLM2采用了一种名为条件在线人类反馈强化学习(COOL RLHF)的新策略,并使用PPO。这种方法解决了两个关键挑战。第一个是偏好冲突,即很难同时满足两种偏好,如有用性和无害性。第二个挑战是奖励破解,随着模型规模的增加和策略的增强,这个问题变得更加严重。COOL RLHF引入了一种条件奖励机制,通过允许单个奖励模型根据特定的条件提示动态调整其关注点,有效地整合了多种偏好,从而调和了不同的偏好。此外,COOL RLHF采用了一种具有两条不同路径的多轮在线RLHF策略:一条快速路径用于立即、有针对性的改进,一条慢速路径用于长期、全面的奖励模型优化。这种方法使模型能够快速适应新的人类反馈,同时降低奖励破解的风险。
3.5 Claude 3
Claude 3(Anthropic,2024)是Anthropic开发的一系列大型多模态模型,在基准评估中表现出强大的性能。它包括三个具有不同能力和速度的模型:最大的Claude 3 Opus、中等大小的Claude 3 Sonnet和最小的Claude 3 Haiku。Claude 3模型在基准测试中表现出色,在推理、数学和编码方面设定了新的标准。Claude 3 Opus在诸如GPQA(Rein等人,2023)、MMLU(Hendrycks等人,2020)和MMMU(Yue等人,2024)等评估中取得了最先进的结果。Claude 3 Haiku在大多数文本任务中与Claude 2相当或超过它,而Sonnet和Opus的表现明显更好。
作者在强化学习(RL)过程中使用一种称为宪法人工智能(Bai等人,2022)的技术使Claude 3与人类价值观对齐。在RL阶段,宪法人工智能遵循与RLHF类似的过程,但在无害性方面使用人工智能反馈,即RLAIF。具体来说,它将语言模型对一组规则和原则的解释提炼成一个混合的人类/人工智能偏好模型(PM),使用人类标签表示有用性,人工智能标签表示无害性。然后,他们使用带有这个PM的RL对监督学习模型进行微调,从而得到一个由RLAIF训练的策略。
3.6 Zephyr 141B - A39B
Zephyr 141B - A39B(HuggingFaceH4,2024)是Zephyr(Tunstall等人,2023)语言模型系列的最新成员,由Argilla、KAIST和Hugging Face合作开发。这个模型是一个专家混合模型(MoE),总共有1410亿个参数,其中390亿个是活跃的,是从Mixtral - 8x22Bv0.1(Mistral AI,2024)微调得到的。
Zephyr 141B - A39B采用了一种新颖的对齐算法,称为优势比偏好优化(ORPO)(Hong等人,2024)。ORPO是一种简单、统一的对齐方法,在监督微调期间阻止模型采用不期望的生成风格。值得注意的是,ORPO不需要SFT预热阶段、奖励模型或参考模型,使其具有很高的资源效率。该方法通过在标准的SFT负对数似然损失上添加一个基于优势比的惩罚项来工作,使模型能够区分偏好和非偏好的响应风格。
3.7 DeepSeek - V2
DeepSeek - V2(Liu等人,2024a)是DeepSeek - AI开发的一种强大的专家混合(MoE)语言模型,旨在实现经济的训练和高效的推理。它具有创新的架构,如多头潜在注意力(MLA)和DeepSeekMoE。它总共有2360亿个参数,其中每个标记激活210亿个,支持长达128K标记的上下文长度。该模型在一个包含8.1万亿标记的高质量、多源语料库上进行预训练。评估表明,DeepSeek - V2及其聊天版本在开源模型中保持顶级性能,尽管只有210亿个激活参数。
在RL阶段,DeepSeek - V2使用组相对策略优化(GRPO)(Shao等人,2024)进行优化,以降低训练成本。与使用与策略模型大小相似的评论家模型的传统RL方法不同,GRPO省去了评论家模型,并从同一问题的一组输出计算的分数中估计基线。此外,采用了两阶段RL训练策略:第一阶段侧重于推理对齐,第二阶段侧重于人类偏好对齐,因为作者发现这些阶段具有不同的特点。
3.8 ChatGLM
ChatGLM(GLM等人,2024)是由智谱AI开发的一系列不断发展的大型语言模型。该系列的最新版本是GLM - 4,包括GLM - 4、GLM - 4Air和GLM - 4 - 9B等变体。这些模型在一个超过10万亿标记的数据集上进行预训练,主要是中文和英文,然后通过监督微调(SFT)和RLHF的组合进行后训练,以实现高级对齐质量。评估结果表明,GLM - 4在像MMLU这样的一般基准测试中与GPT - 4(OpenAI,2023)相当甚至超过它,并且在通过AlignBench(Liu等人,2023b)测量的中文特定对齐方面表现出优异的性能。
强化学习阶段涉及ChatGLM - RLHF(Hou等人,2024)流程,该流程增强了与人类偏好的对齐。这个流程包括三个主要组件:收集人类偏好数据、训练奖励模型和优化策略模型。为了支持大规模训练,ChatGLM - RLHF包括减少奖励方差以实现稳定训练的方法,利用模型并行和融合梯度下降,并应用正则化约束以防止大型语言模型的灾难性遗忘。实验结果证实,与ChatGLM的监督微调版本相比,ChatGLM - RLHF在对齐任务上有显著的改进。
3.9 Nemotron - 4 340B
Nemotron - 4 340B(Adler等人,2024)是NVIDIA发布的一系列模型,包括Nemotron - 4 - 340B - Base、Nemotron - 4 - 340B - Instruct和Nemotron - 4 - 340B - Reward。Nemotron - 4 - 340B - Base模型在一个高质量数据集的9万亿标记上进行训练。在开发Nemotron - 4 - 340B - Instruct的对齐过程中,超过98%的数据是由模型合成生成的。评估表明,这些模型在广泛的评估基准测试中与开放访问模型具有竞争力。
在偏好微调阶段,同时使用DPO(Rafailov等人,2024)和一种新的对齐算法——奖励感知偏好优化(RPO),通过多次迭代来改进模型。RPO解决了DPO的一个局限性,即所选和被拒绝响应之间的质量差异没有被考虑,导致过拟合和忘记有价值的响应。RPO使用来自策略网络的隐式奖励来近似这个差距,使模型能够更好地从优秀反馈中学习和保留。
3.10 Llama 3
Llama 3(Dubey等人,2024)是Meta开发的一系列开源基础语言模型,有80亿、700亿和4050亿参数的版本。它在一个比Llama 2(Touvron等人,2023)使用的1.8万亿标记大得多的约15万亿多语言标记的语料库上进行训练。大量的实证评估表明,Llama 3在各种任务中达到了与领先模型(如GPT - 4(OpenAI,2023))相当的性能。
将Llama 3与人类反馈对齐的训练后过程涉及六轮迭代优化。每一轮包括监督微调(SFT),然后是DPO,最终模型是所有轮次输出的平均值。对于每一轮,在新收集的偏好标注数据上训练一个奖励模型(RM),针对基于预训练检查点构建的广泛能力。在SFT之后,应用DPO进一步优化SFT模型,使用从先前轮次的最佳性能模型获得的最新偏好数据批次。为了增强DPO训练的稳定性,进行了两个关键调整:在DPO损失中屏蔽格式标记,并通过负对数似然(NLL)损失引入正则化。
3.11 Qwen2
Qwen2(Yang等人,2024a)是阿里巴巴开发的一系列大型语言模型,在密集配置下参数范围从5亿到720亿,还有一个570亿参数的专家混合变体,其中每个标记激活140亿个。它在一个包含超过7万亿标记的高质量、大规模数据集上进行预训练,涵盖了广泛的领域和语言。大量评估表明,Qwen2优于大多数先前的开放权重模型,包括其前身Qwen1.5,并在包括语言理解、生成、多语言能力、编码、数学和推理等一系列基准测试中取得了有竞争力的结果。
Qwen2的偏好微调过程包括两个主要阶段:离线和在线学习。在离线阶段,Qwen2使用DPO进行优化,DPO旨在根据预编译的偏好数据集最大化对同一提示的两个响应之间的似然差异。在在线阶段,模型通过利用当前策略模型生成的多个响应中奖励模型选择的偏好对实时地不断改进。此外,使用在线合并优化器(Lu等人,2024)来最小化对齐成本。
3.12 Gemma 2
Gemma 2(Team等人,2024b)是谷歌开发的Gemma系列轻量级、最先进的开放模型的最新成员,参数范围从20亿到270亿。该模型对Transformer架构进行了一些成熟的修改,包括交错局部 - 全局注意力(Beltagy等人,2020)和组查询注意力(Ainslie等人,2023)。实验表明,这些模型在其尺寸下提供了最佳性能,甚至可以作为比其大2 - 3倍的模型的有竞争力的替代品。
与Gemma 1.1(Team等人,2024a)类似,在训练后的RLHF阶段,作者使用一个高容量模型作为自动评估器来调整超参数并减轻奖励破解(Amodei等人,2016;Skalse等人,2022)。然而,与Gemma 1.1不同的是,他们使用的奖励模型比策略模型大一个数量级。这个奖励模型专门设计用于关注对话能力,重点是多轮交互。
3.13 Starling - 7B
Starling - 7B(Zhu等人,2024)是加州大学伯克利分校开发的一个强大的70亿参数聊天模型,专注于与人类对有用性和无害性的偏好对齐。它使用RLAIF在一个名为Nectar的高质量偏好数据集上从Openchat - 3.5(Wang等人,2024a)进行微调,该数据集包含由提示GPT - 4对响应进行排名生成的380万对比较。结果,该模型在MT - Bench上的得分从7.81提高到8.09,在AlpacaEval上的得分从88.51%提高到91.99%,在Chatbot Arena(Chiang等人,2024)上的人类评估ELO从1072提高到1087。
作者在RLAIF过程中对PPO算法进行了一些改进,以提高训练的稳定性和鲁棒性。首先,他们引入了一个恒定的正奖励用于长度控制,以防止过度冗长。这种调整有助于解决在早期阶段奖励模型的高度负奖励可能导致策略模型在仅进行几次梯度更新后变得过于冗长的问题。其次,他们预训练评论家模型,以减少由于随机初始化评论家而导致的早期性能下降。第三,他们对演员和评论家模型进行全参数调整,而不是仅调整前四层,以在强化学习阶段最大化性能改进。
3.14 o1
OpenAI的o1(OpenAI,2024b)是一个新开发的大型语言模型,针对复杂推理进行了优化,在其训练中使用了强化学习。在生成响应之前,o1进行广泛的内部思考过程,使其能够在各种推理任务中表现出色。该模型在许多具有挑战性的任务中显著超过GPT - 4o(OpenAI,2024a):在Codeforces的编程竞赛中排名第89百分位,在AIME的数学竞赛中跻身前500名参与者之列,并在诸如GPQA等科学基准测试中超过博士水平的准确性。
o1的训练涉及一个大规模的强化学习算法,通过详细的思维链(CoT)(Wei等人,2023)强调富有成效的思考,具有高数据效率。为了保留模型的未过滤推理能力,不对其内部思考过程应用策略合规性或用户偏好训练,这也提供了一个了解模型原始思维过程的独特机会。这种方法使o1能够在训练期间改进其策略、纠正错误并解构复杂问题。值得注意的是,模型的性能随着训练计算量的增加和测试时更广泛的计算而提高。
3.15 其他
Reka Core、Flash和Edge:Team等人(2024c)是Reka从头开发的强大的多模态语言模型。Reka Edge和Reka Flash是分别具有70亿和210亿参数的密集模型,性能优于许多更大的模型,并为其计算类提供了出色的性能。旗舰模型Reka Core在自动和盲人类评估中与领先模型如GPT - 4v、Gemini和Claude 3竞争。在训练后,在监督微调之后,Reka模型使用PPO进行多轮RLHF以进一步增强对齐。
Phi - 3:Abdin等人(2024)是微软推出的一系列语言模型,包括phi - 3 - mini、phi - 3 - small和phi - 3 - medium。值得注意的是,最小的模型phi - 3 - mini在3.3万亿标记上进行训练,但仅包含38亿个参数,使其足够紧凑,可以部署在移动设备上。尽管尺寸相对较小,但phi - 3 - mini在学术基准测试和内部测试中表现出与更大模型(如Mixtral 8x7B和GPT - 3.5)相当的性能,在MMLU上达到69%,在MT - bench上达到8.38分。在训练后,作者使用DPO引导phi - 3远离不期望的行为,将那些输出视为“被拒绝”的响应。
Athene - 70B:Nexusflow(2024)是一个从Llama - 3 - 70B(Dubey等人,2024)微调得到的强大聊天模型,由Nexusflow开发。它在Arena - Hard - Auto上取得了令人印象深刻的77.8%的分数,接近领先的专有模型如GPT - 4o(79.2%)和Claude - 3.5 - Sonnet(79.3%)。这比其前身Llama - 3 - 70B - Instruct的46.6%有了显著的飞跃。这一进展归因于Nexusflow的有针对性的训练后方法,该方法提高了模型的性能。具体来说,Nexusflow根据涵盖指令遵循、编码、创意写作和多语言任务的内部基准评估精心策划高质量的偏好数据。然后使用这些数据进行有针对性的RLHF,导致在Llama - 3 - 70B - Instruct的基础上有了显著的性能提升。
Hermes 3:Teknium等人(2024)是由Nous Research开发的一系列中立对齐的通用指令和工具使用模型,具有先进的推理和创造能力。它从Llama 3.1(Dubey等人,2024)的80亿、700亿和4050亿变体进行微调,最大的模型Hermes 3 405B在几个公共基准测试中在开源模型中设定了最先进的性能。Hermes在包括推理任务和创意应用(如角色扮演和写作)等不同的能力和领域上进行训练,这些领域是RLHF旨在优化的,如数学和代码。此外,它旨在精确和中立地遵循系统和指令提示,不像许多商业模型可能会出于道德原因拒绝指令。为了进一步对齐Hermes,作者利用DPO并训练一个LoRA(Hu等人,2021)适配器,而不是微调整个模型,显著减少了参考模型和训练模型的GPU内存使用。
4 RLHF:人类反馈强化学习
人类反馈强化学习(RLHF)是一种将强化学习(RL)与人类反馈相结合的训练方法,使大语言模型与人类价值观、偏好和期望对齐。RLHF由两个主要组件组成:(1)收集人类反馈以训练奖励模型,其中人类评估者通过根据质量和相关性等因素对响应进行评分或排名来提供对大语言模型输出的反馈。然后,使用此反馈训练一个奖励模型,该模型预测输出的质量并在RL过程中用作奖励函数;(2)使用人类反馈进行偏好优化,其中训练好的奖励模型指导大语言模型输出的优化,以最大化预测奖励,使大语言模型的行为与人类偏好对齐。下面,我们将通过最近的研究来说明这两个组件。
4.1收集人类反馈以训练奖励模型
Skywork - Reward(Liu等人,2024b):Skywork - Reward是一个精心设计的数据集,包含80,000个高质量的偏好对,通过有效的数据选择和过滤策略进行筛选。如图3所示,原始数据集有378,000个偏好对,经过显著筛选后成为一个紧凑、高质量的80,000对数据集。尽管比现有数据集小得多,但通过严格的清洗、一致性检查、基于模型的评分以过滤掉低质量样本和手动审查,它实现了卓越的质量。涵盖了诸如指令遵循、代码生成和多语言处理等多种任务,Skywork - Reward为像Skywork - Reward - Gemma - 27B这样在基准测试中表现出色的模型奠定了基础。通过使语言模型更好地理解人类偏好,Skywork - Reward有助于大语言模型在实际应用中变得更加准确和有用。
TÜLU - V2 - mix(Ivison等人,2023):TÜLU - V2 - mix旨在增强大型语言模型的指令遵循能力,提供了一个多样化的数据集,提高了模型在多领域任务中的泛化和执行能力。它涵盖了广泛的任务,包括问答、代码生成、翻译和多轮对话,特别强调多语言适应性和处理复杂现实世界场景的能力。另一方面,Skywork - Reward旨在使用偏好对使模型与人类偏好对齐,帮助模型学习生成用户偏好的响应,如流畅和连贯的文本。虽然TÜLU - V2 - mix在广泛的任务中具有出色的泛化能力,但Skywork - Reward专注于优化以用户为中心的输出。它们共同解决了提升语言模型能力的互补目标。
4.2使用人类反馈进行偏好优化
一旦奖励模型被训练出来,它就会被用于通过强化学习指导原始大语言模型的微调。主要目标是根据预测的奖励改进大语言模型的行为,使其更有可能生成与人类偏好一致的输出。最近的研究(Ouyang等人,2022;Yuan等人,2023;Dong等人,2024;Ahmadian等人,2024)表明,这个过程可以分为两个关键步骤:(1)奖励:在这一步中,大语言模型针对给定的指令生成多个输出。然后,每个输出都通过训练好的奖励模型,该模型分配一个近似人类偏好的标量分数。(2)策略优化:在这一步中,使用近端策略优化(PPO)(Schulman等人,2017)或信任区域策略优化(TRPO)(Schulman,2015)算法通过调整大语言模型的参数来最大化预测奖励,从而对大语言模型进行微调。
这两个步骤——奖励和策略优化——可以迭代进行,这意味着生成输出、用训练好的奖励模型对其进行奖励以及微调大语言模型以最大化奖励的过程可以重复多次。随着每次迭代,大语言模型的性能会提高,因为它会改进其行为以更好地与人类偏好对齐。这种迭代循环使大语言模型能够不断适应和优化其响应,最终导致更有效和一致的输出。
5 RLAIF:人工智能反馈强化学习
人工智能反馈强化学习(RLAIF)是一种有前途的替代或补充人类反馈强化学习(RLHF)的方法,它利用人工智能系统——通常是更强大或专门的大语言模型(例如,GPT - 4(OpenAI,2024a))——为正在训练的大语言模型的输出提供反馈。这种方法具有可扩展性、一致性和成本效益等优点,同时最大限度地减少了对人类评估者的依赖。下面,我们探讨了几种在强化学习中用人工智能反馈替代人类反馈的方法,重点介绍了以下几种途径:(1)提炼人工智能反馈以训练奖励模型;(2)将大语言模型用作奖励函数;(3)自我奖励。
5.1提炼人工智能反馈以训练奖励模型
除了手动收集的数据外,从预训练的大语言模型中提炼数据集提供了一种有效的替代方法。通过利用像GPT - 4这样强大的大语言模型的输出,研究人员可以在手动筛选和自动评估之间架起一座桥梁。
UltraFeedback(Cui等人,2023):UltraFeedback是一个大规模的人工智能反馈数据集,旨在提高大型语言模型(LLM)的性能和对齐。它包含超过100万个高质量的GPT - 4反馈注释,涉及250,000个用户 - 助手交互,重点关注关键维度,如指令遵循、准确性、诚实性和有用性。该数据集是通过收集60,000个不同的指令,使用17个不同的模型生成响应,并利用GPT - 4进行详细的批评和评分创建的,其中使用了思维链推理来减少偏差。
Magpie:Xu等人(2024b)介绍了一种自合成方法,利用对齐的大语言模型的自回归性质。通过使用预定义的模板作为提示,模型自动生成用户查询和相应的响应,无需手动干预或初始种子问题。具体来说,如图4所示,对齐的大语言模型(例如,Llama - 3 - Instruct模型)被用于合成400万个指令 - 响应对,随后对数据集进行过滤,以保留300,000个高质量对。然后,这些对被用于微调Llama - 3 - 8B - Base模型。值得注意的是,微调后的模型达到了与通过监督微调和人类反馈强化学习在1000万个示例上进行训练的官方Llama - 3 - 8B - Instruct模型相当的性能。此外,用Magpie微调的模型在对齐基准测试(如AlpacaEval)上表现出色,超过了在其他开放数据集和偏好优化方法上训练的模型。
HelpSteer2(Wang等人,2024e):HelpSteer2是一个高效的开源偏好数据集,包含大约10,000个比较样本,旨在训练高性能奖励模型。该数据集是使用各种模型(包括GPT - 3.5、Claude等)生成的响应构建的,并具有多维注释,如流畅性、相关性、创造性和安全性。偏好对是根据人类或自动评估构建的,能够对奖励模型进行细粒度的对齐。通过严格的数据清理和优化,HelpSteer2以紧凑的格式提供高质量的注释。它在CC - BY - 4.0许可证下发布,促进了可访问性。
OffsetBias(Park等人,2024):OffsetBias是一个精心设计的数据集,旨在减轻奖励模型中的偏差,由包括GPT - 3.5、GPT - 4、Claude和开源模型(如Llama 2)生成的响应构建。如图5所示,OffsetBias系统地解决了六种已识别的偏差类型,即内容、风格、信息量、安全性、创造性和长度。基于此,通过属性控制的提示和多模型输出生成比较样本。这些样本用多维分数和偏好标签进行注释,以突出或中和偏差,使对齐的大语言模型本身能够进行精细的对齐。OffsetBias是提高奖励模型公平性和可靠性的有力资源,其数据可公开用于研究和开发。
5.2将大语言模型用作奖励函数
随着奖励模型训练变得更加复杂,一个自然的进展是在强化学习循环中使用大语言模型本身作为评估器。
探索与大语言模型(ELLM)奖励(Du等人,2023):ELLM是一种将大语言模型与强化学习(RL)集成的方法,用于在预训练阶段增强探索能力。图6展示了整个流程:智能体的当前状态被转换为自然语言描述,然后输入到大语言模型中。大语言模型根据此状态描述生成探索目标,如特定动作或目标位置。强化学习智能体试图实现这些目标,环境在目标完成时提供奖励。这种方法通过引导智能体朝向状态空间中可能有价值的区域,提高了探索效率,而无需预先设计的奖励。ELLM在稀疏奖励环境中特别有用。与传统方法相比,ELLM显著提高了探索效率,涵盖了更多的常识行为,并为下游任务提供了更好的初始化。
奖励设计与语言模型(RDLM):Kwon等人(2023)利用像GPT - 3这样的大语言模型简化强化学习中的奖励函数设计,允许用户通过自然语言描述定义期望的行为。具体来说,用户提供任务描述或几个示例,大语言模型通过根据这些标准评估智能体的行为来生成奖励信号。RDLM不是生成奖励代码,而是输出直接的奖励值,强化学习智能体使用这些值进行策略优化。这种方法对于用户目标明确但手动设计奖励函数复杂的任务非常理想。虽然ELLM侧重于在预训练期间通过生成有意义的目标引导探索,但RDLM强调针对特定任务生成奖励,通过提示对齐的大语言模型进行采样直接构建指令,以简化复杂的奖励设计并实现更好的智能体与人类意图的对齐。
Eureka(Ma等人,2023):Eureka是一种算法,利用大语言模型自动生成和优化强化学习任务的奖励函数代码。如图7所示,首先,一个编码大语言模型(如GPT - 4)根据任务描述生成初始奖励函数代码。然后,使用进化策略对该代码进行迭代优化,其中候选奖励函数根据它们引导强化学习智能体成功完成任务的程度进行评估。这个过程不断进化奖励函数,以提高其质量和有效性。Eureka在需要复杂或高度特定奖励定义的任务中特别有效,例如高级机器人技能。它专注于直接优化奖励代码,使其适用于精确奖励塑造至关重要的场景。通过利用大语言模型生成和优化代码的能力,Eureka进化出能够有效引导强化学习智能体的奖励函数。实验表明,Eureka在83%的测试任务中优于人类设计的奖励,平均性能提高了52%,展示了其在具有挑战性的场景(如机器人任务)中进行高级技能学习的潜力。
Text2Reward(Xie等人,2023):Text2Reward是一个框架,利用大语言模型从自然语言任务描述自动生成密集且可解释的奖励函数代码,实现跨不同强化学习任务的高效奖励塑造。如图8所示,该过程从用户提供自然语言的任务描述开始,然后将其输入到大语言模型中以生成可执行的奖励代码。这个代码通常包括特定任务的逻辑,并且可能集成外部库以实现复杂功能。生成的奖励函数然后用于强化学习中以引导智能体的行为。此外,Text2Reward支持通过人类反馈对奖励代码进行迭代优化,实现进一步的优化。这种方法在提供跨不同强化学习任务的灵活、可解释的奖励方面表现出色,特别是在机器人和操作领域。与Eureka不同,Text2Reward强调创建可读的奖励代码,集成外部库,并通过人类反馈支持迭代优化。虽然两者都旨在自动化奖励设计,但Eureka在优化复杂奖励逻辑方面表现出色,而Text2Reward在广泛的任务中优先考虑灵活性、可解释性和适应性。
RLAIF:Lee等人(2023)通过利用大语言模型用人工智能生成的反馈替换强化学习中的人类反馈。该过程从为给定任务生成候选输出开始,如文本总结或对话生成。这些输出被配对并输入到大语言模型中,大语言模型对它们进行评估并提供偏好(例如,选择更好的输出)或根据特定任务标准分配分数。然后,使用此反馈训练一个奖励模型,该模型预测输出的质量并指导强化学习智能体。在其简化变体中,直接RLAIF(d - RLAIF)(见图10),现成的大语言模型直接在强化学习期间提供分数作为奖励信号,绕过了对奖励模型的需求。强化学习策略使用这些奖励进行优化,通常使用近端策略优化(PPO)等算法。这种方法实现了自动化、可扩展和高质量的反馈生成,有效地使强化学习智能体的行为与任务目标对齐,同时减少了对人类注释的依赖。
生成验证器:Zhang等人(2024a)重新定义了验证,将其视为文本生成任务,利用大型语言模型生成有效的输出和推理链,如“是”或“否”并带有解释。如图9所示,这种方法将验证集成到大型语言模型的生成能力中,使它们能够评估和解释候选答案,以透明和可解释的方式进行。通过将验证框架为下一个标记预测,生成验证器消除了对传统判别模型的依赖,并提高了推理准确性。实验结果表明,它在需要逻辑推理、可解释性和可扩展性能的任务中优于传统方法,展示了其在改进大型语言模型推理能力方面的潜力。
5.3自我奖励
自我奖励机制使大语言模型能够自主评估和改进自己的性能,解决了现有强化学习方法的成本、可扩展性和适应性限制。
自我优化的大语言模型:Song等人(2023)利用大型语言模型自动生成深度强化学习(DRL)任务的奖励函数,并引入了一种自我优化机制来迭代改进这些函数。该过程从大语言模型根据自然语言任务描述生成初始奖励函数开始。然后,将该奖励函数应用于强化学习训练,并评估智能体的性能。来自此评估的反馈被反馈到大语言模型中,使其能够以闭环方式动态调整和改进奖励函数。与Eureka和Text2Reward相比,这种方法消除了对外部优化算法或手动干预的需求。
自我奖励的语言模型(SRLM):Yuan等人(2024)介绍了一种新颖的方法,其中大语言模型既充当生成器又充当评估器,创建了一个自包含的学习系统。如图11所示,模型首先从现有数据生成新的提示(指令)和多个候选响应,从而创建一个多样化和全面的训练样本集。随后,模型使用结构化评分机制评估这些候选响应以确定其质量。评估框架涵盖多个维度,包括相关性、覆盖范围、有用性、清晰度和专业性,并根据这些标准为每个响应分配分数。利用这些分数,构建由优选响应和不优选响应组成的偏好对。这些对用于直接偏好优化(DPO),提高其生成高质量响应的能力。通过迭代改进,模型逐渐提高其性能。实验结果表明,使用SRLM对Llama 2 70B进行三轮微调在基准测试(如AlpacaEval 2.0)上优于包括GPT - 4和Claude 2在内的几种最先进的模型,展示了其在提高指令遵循和一般任务性能方面的有效性。
具有自我生成对比判断的生成式评判(Con - J):Ye等人(2024)提出了一种具有自我生成对比判断的自我奖励机制,允许大型语言模型通过提供详细的自然语言理由来评估和改进其输出。如图13所示,与传统的标量奖励模型输出单个数值分数不同,生成式评判比较候选输出并生成带有自然语言解释的正面和负面评估。这使模型能够评估为什么一个输出优于另一个输出,提供可解释性并使其决策与微妙的人类偏好对齐。该框架还使用DPO进行训练,并且发现不仅指令遵循性能从自我奖励的大型语言模型对齐相对于基线种子模型有所提高,而且重要的是奖励建模能力(不再固定)也有所提高。这意味着模型在迭代过程中能够更好地与任务目标对齐。在实验中,生成式评判在使输出与人类偏好对齐方面达到了与标量奖励模型相当的性能,但在可解释性和对数据集偏差的鲁棒性方面表现出色。通过利用对比判断,模型在需要多方面推理的任务中表现出增强的适应性,并提高了其透明决策的能力。
6 RLHF/RLAIF分析
虽然RLHF和RLAIF是使大语言模型与期望行为对齐的有效方法,但仍存在需要仔细分析的挑战。这些挑战包括解决训练后的奖励模型和对齐的大语言模型之间的分布外问题,确保模型机制对人类的可解释性,以及维护安全和评估基准以训练稳健的奖励模型。在本节中,我们讨论了最近解决这些挑战的工作,并提供了克服它们的策略。
6.1分布外(OOD)问题
分布外(OOD)问题在奖励建模中是一个重大挑战,特别是当奖励模型和大型语言模型(LLM)独立训练时。这种分离可能导致两个模型的知识和决策框架不一致,可能导致奖励模型遇到不熟悉的场景或无法有效泛化。解决OOD挑战对于确保奖励模型(RMs)在各种输入上可靠地执行至关重要。
最流行的奖励建模方法基于布拉德利 - 特里(BT)模型的最大似然估计(MLE),这种方法在捕捉复杂的人类偏好方面能力有限。Lou等人(2024)指出,奖励模型在遇到OOD输入时经常遇到困难,表现出过度自信的危险倾向,这源于模型对训练数据分布的依赖,而训练数据分布可能无法考虑现实世界环境的可变性。他们强调传统的奖励模型缺乏量化和处理不确定性的机制。通过引入不确定性量化,如拒绝不确定性量化,所提出的方法使奖励模型能够区分数据空间中的“已知”和“未知”区域,确保更谨慎和稳健的决策。此外,对比学习和正则化技术的集成进一步增强了奖励模型处理OOD场景的能力。
Yang等人(2024b)发现,当输入文本包含已知模式的新颖组合或以前未见过的语言结构时,奖励模型无法泛化偏好。为了解决这个限制,他们提出了可泛化奖励模型(GRM),在训练期间对奖励模型的隐藏状态进行正则化,确保它们保留大型语言模型的潜在语言理解。此外,引入了文本生成损失以维持偏好学习和大型语言模型核心生成能力之间的平衡。结果是一个更能适应不同输入的奖励模型。
6.2人类可解释性
人类可解释性是奖励建模的一个关键方面,因为它使研究人员和从业者能够理解和信任模型做出的决策。奖励模型通常产生离散分数来评估大型语言模型的输出,但这些分数背后的原理并不总是透明的。增强可解释性对于确保对齐过程是可理解和可靠的至关重要,特别是在人类偏好起核心作用的敏感应用中。
ArmoRM:Wang等人(2024b)认为当前的奖励模型经常混淆不同的目标,使得难以辨别输入数据的哪些方面影响它们的评分。为了解决这个问题,他们提出了ArmoRM(绝对评分多目标奖励模型)。如图14所示,该模型处理上下文和多个候选响应,在可解释的维度上对它们进行评估,如诚实性、安全性、冗长性和相关性。每个维度由一个专门的子模型评估,该子模型生成单独的分数。然后,这些分数由一个门控网络动态加权,该门控网络根据上下文进行调整并产生最终的奖励分数,用作强化学习的反馈。这种专家混合方法有效地分离了目标,使分数能够更清楚地归因于特定的输入特征或目标,从而提高了可解释性和透明度。
分位数奖励模型(QRM):Dorka(2024)观察到传统的奖励模型通常为奖励产生单个点估计,这限制了它们捕捉人类偏好多样性和复杂性的能力。相比之下,他们提出了QRM,它利用分位数回归来估计奖励的完整分布,从而能够更丰富地表示人类反馈。图15展示了QRM的架构:LLM骨干网络处理提示和响应,生成两种类型的嵌入——一种用于门控网络(提示嵌入),另一种用于分位数回归层(提示 - 响应嵌入)。分位数回归层估计各种属性(如有用性和无害性)的奖励分布。同时,门控网络为这些属性分布分配权重。然后将这些加权分布组合起来以产生最终的奖励分布。这种方法在处理嘈杂标签和冲突偏好方面特别有效,因为它将此类不确定性建模为奖励分布内的不同模式。通过估计完整的分布,QRMs增强了决策的可解释性,例如在风险规避任务中关注较低分位数或在探索任务中关注较高分位数。
通用偏好表示模型(GPM):Zhang等人(2024c)强调了结构化偏好表示在提高可解释性方面的重要性。所提出的偏好表示学习方法通过将人类偏好嵌入到潜在空间中来增强可解释性,这提供了一种结构化和透明的方式来建模复杂关系。与依赖传统的基于点的评分系统不同,这种方法将偏好映射到一个连续空间中,其中每个维度代表一个特定的属性或特征,如相关性或连贯性。这允许根据响应在空间中的位置清楚地解释为什么某些响应更受青睐。例如,一个响应可能由于其简洁性而排名更高,并且这种偏好可以直接追溯到其与潜在空间中“简洁性”维度的对齐。与传统方法不同,传统方法难以处理非传递性或循环偏好,偏好嵌入自然地捕捉这些细微关系。通过可视化或解释响应在多个维度上如何相互关联,该方法避免了强制进行线性排名,而是反映了人类反馈的真实复杂性。此外,潜在表示动态地适应不同的上下文,使得能够根据与情况相关的特定属性来解释偏好。例如,在一种情况下可能更喜欢幽默的响应,而在另一种情况下可能是信息性占主导地位,并且模型可以将偏好归因于这些不同的因素。
6.3安全性
安全性是奖励模型的一个关键考虑因素,特别是在处理潜在有害或有偏见的输入时。由于奖励模型指导LLM的优化,它们对敏感或对抗性内容的处理在确保LLM生成的输出符合道德和安全标准方面起着重要作用。本小节探讨了增强奖励模型安全性的挑战和最新进展。
安全RLHF(Dai等人,2023):在使LLM与人类价值观对齐时,安全RLHF强调有用性和无害性。安全RLHF使用一种结构化方法通过将人类偏好注释解耦为两个不同的目标来平衡这两个目标:一个用于有用性的奖励模型和一个用于无害性的成本模型。这种解耦是通过在收集的响应数据上独立注释有用性和无害性来实现的,每个响应在这些方面分别进行评估。
在安全RL阶段,该方法通过拉格朗日方法寻求最大化预期奖励(有用性),同时强制执行成本约束(无害性),其中无约束目标可以表示为:
其中是奖励目标,是成本目标,并且作为拉格朗日乘子动态调整,以在训练期间自适应地平衡有用性和无害性。该方法迭代地更新模型参数和拉格朗日乘子,每一轮安全RLHF训练都会调整以反映最近对安全约束的反馈。
量化奖励调节(Quark):Lu等人(2022)提供了一个框架Quark,通过为奖励模型配备识别和遗忘不安全输出的机制来解决有害内容问题。Quark算法的“遗忘”方面体现在它能够通过强化学习调整语言模型的生成倾向,逐渐“忘记”不良特征,如毒性、重复或负面情绪。该算法使用奖励函数评估生成的样本,将低分位数样本标记为模型需要抑制的特征,并在微调过程中通过条件生成逐渐削弱这些倾向。此外,强化学习模型在开始时对低分位数倾向的衰减和高奖励目标的增强进行控制,减少了模型对不良特征的依赖。通过利用奖励分位数来指导过程,Quark有效地“遗忘”了模型中现有的偏差,最终实现了与期望目标一致的高质量文本生成。
宪法人工智能(Constitutional AI):Bai等人(2022)引入了一种通过预定义原则(称为“宪法”)引导AI行为的新颖方法,从而能够在不严重依赖人类标记数据的情况下训练无害且透明的AI助手。核心思想是AI可以根据这些原则自我评估和改进其输出,确保安全性和与期望目标的对齐。该过程涉及两个关键阶段:监督学习阶段和强化学习阶段。在监督学习阶段,模型生成初始响应,根据宪法原则对其进行批判,并改进其输出,然后用于微调模型。在强化学习阶段,模型生成多个对提示的响应,这些响应由一个与宪法指南对齐的偏好模型进行评估。这些评估作为奖励信号进一步优化模型。
图17详细说明了这个两阶段框架。在监督学习阶段,模型通过自我反馈逐步学习识别和纠正其响应中的不良特征。在强化学习阶段,偏好模型评估生成的响应,增强了模型生成与宪法原则一致的输出的能力,同时保持透明度。这个框架确保AI不会回避问题,而是直接处理敏感或有害的提示,通过解释为什么它们有问题而不是避免它们。通过利用最小的手动监督和应用明确的规则,这种方法为减少AI输出中的有害内容提供了一种创新的方法,同时增强了AI系统中的透明度和精确的行为控制。
BeaverTails(Ji等人,2024):BeaverTails是一个大规模、高质量的问答数据集,旨在增强大型语言模型(LLM)的安全性和实用性。如图18所示,该数据集独特地分离了问答对的“有用性”和“无害性”注释,为这些关键属性提供了不同的视角。它包括333,963个问答对的安全标签和361,903对用于有用性和无害性指标的专家比较数据。该数据集涵盖了各种现实世界场景,包括日常查询、专业领域、道德挑战和跨文化背景,使研究人员能够更有效地改进LLM行为。与现有数据集不同,BeaverTails在规模和注释粒度方面具有显著优势,旨在成为探索LLM安全性和对齐的社区核心资源。
基于规则的奖励(RBR)(Mu等人,2024):RBR是一种通过依赖明确、详细的规则而不是一般指南来使LLM更安全和更有用的方法。这些规则,如“拒绝应包括道歉但不带有评判性”,被分解为简单的二元命题,例如响应是否包括道歉或避免评判性语言。一个评估LLM对每个提示的响应的评估器LLM根据这些命题(使用正则表达式/\b\w+\b)进行评估并分配概率,然后与现有的仅用于有用性的奖励模型(RM)相结合以创建总奖励。如图19所示,这个组合奖励函数用于强化学习,确保模型与安全政策和有用性目标对齐,而不会过于谨慎。与RLHF或RLAIF不同,RLHF或RLAIF依赖于收集/生成合成数据集来训练奖励模型,RBR直接将规则集成到学习过程中。RLAIF的合成数据集,基于一般指南构建,可能会失去细节或需要随着政策的演变进行大量更新。相比之下,RBR通过在训练期间动态应用规则提供了精细的控制,使其更精确和适应性更强。实验结果表明,RBR实现了卓越的性能,F1分数为97.1,而人类反馈基线为91.7,有效地平衡了LLM输出中的安全性和有用性。
6.4奖励模型评估
RewardBench(Lambert等人,2024):RewardBench是一个全面的基准,旨在评估奖励模型,解决了缺乏针对性、标准化评估方法的问题。它涵盖了包括聊天、推理和安全等不同领域,并引入了一种新颖的提示 - 选择 - 拒绝三元组数据集结构(见图20)。这种结构能够精确评估奖励模型与人类偏好对齐的能力,通过识别和优先考虑高质量输出来实现。该基准包括具有挑战性的测试用例,如分布外查询和细粒度差异,如事实不准确或逻辑不一致。它还提出了系统的评估指标,如拒绝倾向,该指标衡量模型拒绝低质量内容的能力。在RewardBench内的实证研究分析了各种奖励模型,包括通过最大似然估计(MLE)和直接偏好优化(DPO)等方法训练的模型。这些研究揭示了关键的见解,包括模型在拒绝有问题输出方面的局限性、它们对训练数据分布的敏感性以及在指令遵循方面的性能可变性。通过公开数据集和代码库,RewardBench不仅为研究社区提供了可重现的工具,还为奖励模型评估设定了新的标准。
Prometheus 2(Kim等人,2024b):Prometheus 2是一个开源评估模型,旨在解决评估语言模型的关键挑战,如缺乏透明度、对专有系统(如GPT - 4)的依赖以及高评估成本。其主要动机是为跨不同任务评估语言模型输出提供一个可靠且可访问的替代方案。Prometheus 2基于合并直接评估和成对排名训练的模型的权重,解决了语言模型评估中的关键挑战。
直接评估是将指令和响应映射到一个标量值分数,例如,其中。对于评分范围,使用1 - 5李克特量表评分。成对排名是将指令和两对响应映射到或,例如,其中。与直接评估类似,先前的工作已经确定将参考答案和口头反馈集成到评估管道中是至关重要的(Zheng等人,2023;Li等人,2023b,a)。Prometheus 2通过在包括直接评分和成对排名任务的高质量数据集上进行训练来解决这些挑战(见图21)。这个双任务框架确保模型能够处理细微的区别,如微妙的语法错误或逻辑不一致,这对于稳健的语言模型评估至关重要。此外,Prometheus 2采用对齐技术紧密模仿人类偏好,实现了与人类和专有评估一致的最先进性能。其系统方法使模型能够优于现有的开源评估器,提供准确、一致和可解释的评估。
7直接偏好优化(DPO)
虽然有效,但RLHF或RLAIF由于强化学习算法的挑战以及需要准确训练的奖励模型,往往陷入复杂性。最近的研究转向了直接偏好优化(DPO),它通过直接使用人类偏好数据微调LLM绕过了奖励模型。DPO将目标从奖励最大化重新定义为偏好优化,并为使LLM输出与人类期望对齐提供了一条直接且可能更稳健的途径。本节深入探讨了支撑DPO的方法,探索了像SLiC - HF、- DPO、sDPO等方法如何利用偏好数据在没有传统RL框架开销的情况下增强LLM对齐。
7.1 SLiC - hf
SLiC - HF(Zhao等人,2023)利用序列似然校准在不依赖基于奖励的强化学习的情况下基于人类反馈优化LLM,在一个更简单的对比设置中使用人类偏好数据。这是通过使用排名校准损失来区分正序列和负序列来实现的。给定一个输入序列,SLiC - HF将人类偏好的序列(正)与不太偏好的序列(负)配对,并鼓励模型为分配比更高的似然。校准损失函数包含一个边际参数,以确保偏好和非偏好序列之间有足够的分离。
SLiC - HF采用两种主要方法:SLiC - HF - direct和SLiC - HF - sample - rank。SLiC - HF - direct使用原始人类反馈数据(未经过滤或排名)直接校准序列的似然。这种直接应用最小化了复杂性,但如果反馈数据与模型输出不匹配,可能会受到分布外示例的影响。SLiC - HF - sample - rank则涉及为给定输入生成多个候选序列,然后使用排名或奖励模型选择最佳序列。在这种方法中,候选序列通过采样和排名生成,通常使用经过训练以预测人类偏好的成对排名模型。
7.2 DPO
与SLiC - hf类似,DPO(Rafailov等人,2024)通过利用具有简单二元分类目标的闭式优化绕过了RLHF的迭代采样复杂性,该目标直接对偏好进行建模。
与通常训练单独奖励模型的RLHF不同,DPO通过直接调整策略隐式地优化期望的偏好函数。这是通过重新参数化方法实现的,其中模型的输出在布拉德利 - 特里模型(一种常用于成对偏好数据的统计模型)下近似最优策略。DPO的一个关键见解是使用闭式表达式根据学习到的偏好概率直接表示最优策略。导出的策略公式避免了迭代策略更新,而是依赖于通过比较偏好和非偏好响应的似然计算的分类风格损失。这些似然之间的二元交叉熵损失作为主要优化指标,确保模型输出以稳定的方式与人类偏好对齐。
7.3- DPO
虽然DPO作为RLHF的简化替代方案受到了关注,但DPO的参数(一个控制模型偏好对齐和保留原始模型特征之间平衡的超参数)的静态性质限制了其在不同数据质量上的鲁棒性。- DPO(Wu等人,2024a)方法通过利用批次级数据质量评估引入了参数的动态校准机制。批次特定的调整响应每个批次中配对数据的信息量。具体来说,根据每个批次内的平均奖励差异进行调整:对于紧密匹配的对(低差距),减小以允许更积极的更新,而对于更明显的对(高差距),增加以缓和更新,从而避免过拟合。为了实现这一点,每个批次的参数计算为
,其中是个体奖励差异,是通过移动平均更新的基线阈值,缩放差异的影响。此外,- DPO包含一个由引导的过滤机制,通过估计奖励差异分布在每个批次内选择最有信息量的80%样本。
7.4 sDPO
传统DPO的另一个问题是在单个步骤中使用整个偏好数据集,通过将模型输出与单个参考模型进行比较来对齐模型。相比之下,sDPO(Kim等人,2024a)将这些数据集分区并逐步将它们输入到训练过程中。这种方法允许每个训练步骤使用来自先前步骤的更对齐的模型作为参考,创建一个逐步改进的对齐路径。
sDPO从一个SFT基础模型开始,该模型作为初始参考模型。在每个步骤中,一部分偏好数据用于对齐目标模型,并且来自先前步骤的对齐模型成为下一个步骤的参考模型。这种迭代设置允许参考模型的对齐质量逐渐提高,为每个后续对齐步骤提供一个逐渐更高的标准或更低的边界。sDPO通过引入通过越来越对齐的参考模型演变的下限来修改DPO损失。每个步骤训练的目标是通过相对于参考模型区分目标模型对所选与拒绝响应的对数概率比来最大化偏好分数。这种方法创建了一个从容易到更具挑战性的偏好优化的内部进展,类似于课程学习。此外,sDPO建议对偏好数据采用从易到难的分区策略,其中早期块由模型表现良好的数据组成,有助于稳定早期对齐并随着步骤的推进增加难度,从而通过结构化优化路径加强对齐。
7.5 RSO
RSO(Liu等人,2023a)专注于开发统计拒绝采样优化,旨在通过解决SLiC和DPO固有的数据分布限制来改进语言模型与人类偏好的对齐。RSO从基于人类偏好数据集构建一个奖励 - 排名模型开始,该模型提供输出质量的成对比较。这个奖励 - 排名模型然后指导统计拒绝采样过程,允许系统生成紧密近似最优目标策略的响应对。与SLiC不同,SLiC从SFT策略采样对,RSO通过受控拒绝采样方法选择候选对。这种方法首先从SFT策略采样,然后根据奖励 - 排名模型根据它们与期望分布的匹配程度概率性地接受或拒绝样本。采样机制通过逐步重新计算接受标准强调准确性,从而不断将采样分布朝着最优策略改进。RSO然后使用定制的损失函数(如铰链或sigmoid - norm)将模型拟合到这些偏好标记的对上,以确保对齐而不依赖于明确的强化学习结构。
7.6 GPO
GPO(Tang等人,2024)通过在离线数据集上进行优化使大型模型与人类反馈对齐。GPO的核心方法是通过使用一族凸函数参数化损失函数创建一个离线偏好优化的通用框架。现有方法如DPO和SLiC被声称是这种通用方法的特定实例,取决于选择的凸函数(例如,DPO的逻辑函数和SLiC的铰链函数)。GPO进一步通过允许凸函数的灵活性扩展到变体,定义了具有不同正则化强度的广泛偏好优化策略。GPO提供了围绕的泰勒展开式来近似和分析损失函数。这种近似表明,GPO损失通过适应所选凸函数的属性动态地平衡偏好优化和正则化。例如,通过选择具有快速衰减尾部的函数,GPO强制执行更强的正则化,将学习到的策略约束得更接近参考模型。相反,较慢衰减的函数导致更灵活的策略,可能与参考策略有更大的偏差,这可能增加模型的表达能力,但可能需要更仔细地调整正则化系数。
7.7 DRO
DRO(Richemond等人,2024)旨在通过使用单轨迹数据而不是传统的、昂贵的偏好数据来改进LLM对齐。DRO框架的核心是构建一个单一的二次目标函数,该函数在单轨迹设置中近似最优策略和价值函数。这里的主要目标是避免成对偏好,而是使用直接反馈分数(如点赞或差评)。DRO首先定义一个正则化目标函数,其中策略优化由KL散度项引导,与参考策略保持一致,并为每个单轨迹纳入奖励信号。DRO损失函数被构造为观察到的奖励与通过策略和参考项调整的计算期望值之间的平方残差之和。此外,DRO使用一个迭代过程,其中对策略和价值函数参数应用梯度更新以最小化经验损失。这个设置包括一个正则化参数来平衡策略更新与参考模型的稳定性。
8 DPO分析
虽然DPO的简单性和效率使其成为一个有吸引力的选择,但其实践实施揭示了改进的挑战和机会。本节深入探讨了DPO的安全影响,特别是它如何处理有害输出,并探索了DPO变体,其目的是优化最小化有害内容和保持生成多样性之间的权衡。我们揭示了突出基于DPO的方法在实现安全、可靠和高可解释性LLM方面的有效性和局限性的理论和实践考虑的研究。
8.1安全性
(Duan等人,2024):旨在通过在负面示例(如有害或道德上有问题的输出)上进行训练使LLM与人类价值观对齐。它优化一个分布级布拉德利 - 特里偏好模型,该模型将模型的响应与负面样本进行对比,并鼓励模型减少有害性,而不会从正面响应中引入有害偏差。中的优化过程避免了灾难性遗忘——当模型被迫仅最小化负面输出时常见的问题——这可能导致模型忘记如何生成有用、信息丰富的内容。这是通过在训练期间逐步采样自生成的响应并最大化这些响应与人类注释的负面样本之间的差异来实现的,从而在探索和最小化有害内容之间保持平衡。表明它优于以前的方法,如实例级DPO。这意味着在最小化负面内容的同时增强了模型探索不同响应的能力,提高了鲁棒性和响应质量,而不会过度拟合负面样本。
NPO(Zhang等人,2024b):NPO基于偏好优化原则,通过仅使用负面样本来改进语言模型中的遗忘。NPO最小化一个损失函数,该函数选择性地降低模型对指定用于遗忘的数据的置信度。这个损失函数源自DPO,但仅专注于阻止特定输出,而不是比较偏好和不太偏好的响应。在实现中,NPO损失自适应地加权每个梯度步骤,通过一个权重降低已经遗忘的样本的梯度贡献,该权重随着模型对不良样本的置信度下降而接近零,减缓发散并防止灾难性崩溃。
8.2 DPO的变体
DNO(Rosset等人,2024):DNO通过基于纳什均衡概念的批量在线策略结构进行操作,允许模型基于自我博弈轮次的序列进行迭代自我改进。每次迭代涉及模型学习一个基于回归的目标,其中它旨在最大化在一系列“自我博弈”轮次中比竞争输出更受偏好的响应的可能性。从特定提示的模型输出中生成响应对(或输出),并由估计“胜率”的偏好函数进行排名。高边际对——其中一个响应明显更受偏好——被保留,以将训练重点放在明显的改进上。为了保持稳定性和计算效率,DNO实施了一种过滤策略,确保仅选择具有高边际偏好的偏好对进行训练。
SPPO(Wu等人,2024b):SPPO将语言模型优化重新表述为一个常和两人博弈,目标是通过迭代更新识别纳什均衡策略。SPPO中的每个策略更新使用乘法权重方法,这是一种从博弈论改编的框架,专门设计用于近似纳什均衡。该方法通过为给定提示采样响应并使用偏好模型分配获胜概率来进行,获胜概率指示哪些响应更受偏好。在每次迭代中,SPPO通过根据观察到的偏好调整响应的概率分布来改进策略,确保具有更高偏好胜率的响应越来越受青睐。
SPPO的目标函数针对每个响应的概率权重进行优化,以近似理想的纳什均衡。它通过用一个常数近似传统偏好优化方法(如DPO)中使用的对数分区因子来避免直接计算,这可以帮助减少策略更新的方差。
SPO(Swamy等人,2024):SPO植根于社会选择理论中的极小极大获胜者概念,这是SPO用于处理复杂偏好聚合任务的解决方案概念。核心是,SPO将RLHF框架为一个两人零和博弈,通常在“决斗”设置中将两个策略相互对立。然而,SPO将其简化为一个单智能体自我博弈机制,近似极小极大获胜者。为此,SPO使用一个偏好函数,该函数比较两个轨迹并根据一个轨迹比另一个轨迹更受偏好的比例分配分数。这个分数然后用作智能体优化的奖励信号。通过利用基于偏好的零和博弈的对称性,该过程即使在不需要明确的对抗或竞争训练的情况下也能稳健收敛。
DPOP(Pal等人,2024):DPOP旨在解决DPO在对具有低编辑距离的偏好数据微调LLM时的一种失效模式。发现DPO在这种情况下可能会无意中降低偏好响应的可能性,因为它专注于偏好和非偏好完成之间的相对概率。为了克服这个问题,DPOP通过添加一个纠正惩罚项来扩充标准DPO损失,该项确保偏好完成的对数似然不低于参考模型的似然。完整的DPOP损失函数结合了一个标准DPO项和一个正则化项,该正则化项惩罚偏好完成概率的降低。这种修改迫使模型为偏好响应保留高概率,减轻了在DPO中观察到的性能下降风险,特别是当完成对之间的编辑距离较小时。
TDPO(Zeng等人,2024):TDPO通过在令牌级别而不是句子级别进行优化来改进DPO框架,解决了发散效率和内容多样性问题。TDPO将文本生成形式化为一个马尔可夫决策过程,其中每个令牌被视为序列中的一个动作。TDPO引入了令牌级KL散度约束,采用前向KL散度来规范令牌级生成,同时保持多样性。通过将布拉德利 - 特里模型扩展到令牌级别,TDPO利用后悔偏好模型来计算每个令牌对的偏好概率。损失函数结合了前向和反向KL散度项,在与人类偏好对齐和生成多样性之间实现了平衡。两个变体,TDPO1和TDPO2,在处理KL散度的方式上有所不同,TDPO2引入了一个参数来微调偏好和非偏好响应之间的散度平衡。
8.3人类可解释性
(Azar等人,2024):通过最大化偏好概率的非线性函数来优化策略,表示为,其中是一个非递减函数,同时通过KL散度正则化保持与参考策略的接近。通过将设置为恒等函数,提出了身份偏好优化(IPO)作为的一个实用版本,它直接从偏好中学习,而不需要奖励模型,也不依赖于布拉德利 - 特里假设。IPO通过确保策略优化即使在存在确定性或近乎确定性偏好的情况下也朝着参考策略进行正则化来避免过拟合。该方法采用一个简单但有效的经验损失函数,源自根查找问题,可以通过梯度下降进行优化。
拆解DPO和PPO(Ivison等人,2024):拆解DPO和PPO研究了PPO和DPO,发现PPO的在线性质允许在复杂领域(如推理和编码)中进行动态适应和显著的性能改进,其中迭代反馈至关重要,而DPO在计算上更高效,但由于其对静态数据的依赖而在灵活性上受到限制。比较分析表明,偏好质量、奖励模型大小和训练算法选择显著影响下游性能,PPO在多任务、通用设置中通常优于DPO,但DPO在需要较少复杂适应的任务中表现出强劲的结果。
从人类反馈进行迭代偏好学习(Xiong等人,2024):从人类反馈进行迭代偏好学习将RLHF形式化为一个反向KL正则化的上下文多臂老虎机问题,目标是最大化与人类反馈的对齐,同时确保学习到的策略不会偏离预训练模型太远,这由一个KL散度项捕获。理论分析表明,反向KL约束引入了一个随机最优策略,解决了在现实世界对齐中平衡探索与对预训练策略的保真度的挑战。在离线学习中,通过保守地估计奖励应用悲观主义,使用从集中不等式导出的不确定性界,保证了样本效率。在线迭代学习设置基于批量混合学习,其中人类反馈逐步纳入,探索通过基于不确定性的探索策略进行控制。这项研究为离线和在线设置导出了有限样本理论保证,表明所提出的方法,如具有悲观奖励估计和多步拒绝采样的迭代DPO,在样本效率和对齐性能方面优于现有方法。此外,分析突出了探索与利用之间的权衡,证明在线学习期间的战略探索增强了模型对分布外数据的泛化能力,同时也最小化了与初始策略的KL散度。
对齐的见解(Saeidi等人,2024):对齐的见解揭示了DPO面临与过拟合和低效学习相关的挑战,特别是在缺乏正则化机制的情况下。IPO通过引入一个正则化项来平滑偏好函数来解决这些问题,有效地平衡了跨任务的对齐与泛化。KTO(Ethayarajh等人,2024)受前景理论启发,通过将每个响应视为可取或不可取来消除对成对偏好的需求,简化了优化过程并降低了计算复杂度。最后,CPO(Guo等人,2024)通过在训练期间移除参考模型改进了DPO,减少了内存消耗并允许使用更少的资源进行更大规模的模型微调,同时仍然通过最大似然和偏好损失的组合保持对齐。从理论上讲,这些方法用更直接和高效的对齐过程换取了基于RL的反馈的复杂性,但需要仔细注意正则化和偏好采样,以防止模型偏差或泛化不良,特别是在不同的任务领域。
DPO是否优于PPO用于LLM对齐(Xu等人,2024a)?理论分析(Xu等人,2024a)表明,DPO通过直接基于偏好对优化策略,避开了对明确奖励模型的需求,而是将奖励表示为策略概率的对数比。然而,这种方法使DPO面临显著的分布外偏差风险,因为它缺乏奖励函数的正则化影响,导致在偏好数据未覆盖整个模型输出空间时可能出现有偏差的策略分布。相比之下,PPO通过利用学习到的奖励模型减轻了此类问题,该奖励模型引入了一个KL散度正则化项,约束模型的策略更新,防止与参考策略过度偏离,并确保在不同输入分布上更好的泛化。研究证明,PPO的解是DPO解的一个适当子集,这意味着PPO下的任何最优解也可以是DPO下的解,但DPO在存在分布转移的情况下可能产生有偏差的解。此外,PPO的性能通过关键技术(如优势归一化、大批量大小和参考模型的指数移动平均更新)得到显著增强,这些技术稳定了训练并提高了收敛性,特别是在复杂任务(如代码生成)中。
9结论
本文综述了强化学习增强的大语言模型的最新知识状态,试图整合和分析该领域迅速增长的研究。我们对文献进行了系统回顾,包括强化学习的基础知识、流行的强化学习增强的大语言模型、对两种基于奖励模型的强化学习技术——RLHF和RLAIF的研究,以及专注于绕过奖励模型通过DPO直接使大语言模型输出与人类期望对齐的工作。我们希望这项工作将帮助研究人员了解当前的挑战和进展,并激励进一步努力解决当前强化学习增强的大语言模型的不足。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。