LangChain 2024年人工智能发展报告

本文经翻译并二次整理自LangChain State of AI 2024 Report一文。

深入了解 LangSmith 产品使用模式,揭示人工智能生态系统的演变,以及人们构建大语言模型(LLM)应用的方式。

2024年即将结束,回顾这一年与大语言模型(LLMs)的共同进步,我们见证了许多令人振奋的变化。每个月,约有30,000名新用户加入了 LangSmith,这让我们得以更清楚地观察到人工智能领域的变革。

就像去年我们所做的那样,我们在此分享一些有趣的统计数据,揭示了产品使用模式的变化,以及人工智能生态系统的演变。特别是随着开发者利用 LangSmith 来跟踪、评估并迭代应用,观察到一些显著的趋势,包括开源模型的使用增长,以及从以检索为主的工作流转向了多步骤的 AI 代理应用。

接下来,我们将通过一些关键统计数据,深入了解开发者正在关注和构建的内容。

基础设施使用趋势

随着大语言模型(LLMs)的快速发展,大家不禁要问:“哪些模型最受欢迎?”让我们来一起看看这一年在这方面的变化。

主要 LLM 提供商

与去年相比,OpenAI 仍然是 LangSmith 用户中最受欢迎的 LLM 提供商,使用量是排名第二的 Ollama 的六倍以上(按组织使用量计算)。

不过,OllamaGroq 今年的增长势头非常强劲,成功跻身前五名。这也说明了开发者对灵活部署选项和可定制人工智能基础设施的需求日益增加,尤其是这些平台支持运行开源模型——Ollama 更侧重于本地执行,而 Groq 更侧重云端部署。

至于开源模型的使用情况,与去年相比,主要开源模型提供商保持了一定的一致性——OllamaMistralHugging Face 仍是大部分开发者使用的主要平台。这些开源模型的集体使用量占到了**20%**,这显示了开源生态系统的强劲发展。

顶级检索工具/向量存储

对于许多生成性人工智能(GenAI)工作流来说,检索仍然是不可或缺的一部分。2024年,排名前列的向量存储工具并未发生太大变化,ChromaFAISS 仍然是最受欢迎的选择。今年,MilvusMongoDBElastic 也成功进入了前十名。

LangChain产品在应用构建中的使用

随着开发者对生成性人工智能的使用经验不断积累,他们开始构建更加复杂和动态的应用。我们观察到,从日益复杂的工作流到 AI 代理的崛起,创新生态系统正在不断发展。

可观察性不仅限于 LangChain 应用

虽然 LangChain(我们的开源框架)是许多开发者构建 LLM 应用的核心,但 LangSmith 的数据表明,约 15.7% 的跟踪数据来自 非LangChain框架。这反映了一个趋势:无论开发者使用何种框架来构建 LLM 应用,系统的可观察性和监控都是至关重要的,而 LangSmith 完全支持不同框架之间的互操作性。

Python 依然主导,JavaScript 使用增长

对于许多开发者来说,调试、测试和监控仍然是至关重要的环节,因此Python SDK占据了LangSmith使用量的绝大部分,达到 84.7%。不过,随着开发者转向以 Web 为主的应用,JavaScript SDK 也呈现出显著增长,使用量达到了 LangSmith 总使用量的 **15.3%**,是去年的三倍之多。

AI 代理的关注度持续提升

随着企业在各个行业中越来越多地采用 AI 代理,我们的控制代理框架 LangGraph 的使用量也在不断增加。自从2024年3月发布以来,43% 的 LangSmith 组织正在使用 LangGraph 进行跟踪。相比于传统的 LLM 交互,LangGraph 允许开发者实现更复杂的任务。

与此同时,工具调用的增加也是一个显著趋势,我们看到 21.9% 的跟踪数据涉及工具调用,相比2023年的 0.5% 增长了很多。这表明模型开始更加自主地决定何时采取行动,增强了与外部系统的互动能力,比如执行数据库写入等任务。

性能与优化

在应用开发中,平衡速度与复杂性是一个重要挑战——尤其是在涉及 LLM 资源时。我们将进一步探讨开发者如何优化应用,确保高效性能和复杂性之间的平衡。

复杂性不断增长,任务处理更高效

过去一年中,平均步骤数翻倍,从 2023年2.8步 增长到 2024年的7.7步。这表明开发者越来越多地采用多步骤的工作流——例如,信息检索、数据处理和生成结果等操作。这些系统能够串联多个任务,提高了工作的综合效率。

相比之下,LLM调用次数的增长较为温和——从 1.1次 增长到 1.4次。这表明开发者正在设计更加高效的系统,通过较少的 LLM 调用完成更多任务,从而有效控制高成本的 LLM 请求。

LLM 测试与评估

为了确保生成的LLM响应质量和准确性,开发者通常采取哪些措施进行测试?虽然保持高质量的LLM应用始终是个挑战,越来越多的组织开始借助 LangSmith 的评估能力来实现自动化测试和用户反馈循环,从而提升应用的可靠性和稳定性。

LLM 作为评估工具

开发者正在使用 LLM 来评估输出结果,判断其是否符合预设标准。最常见的测试特征包括:相关性准确性完全匹配有用性

这些测试结果表明,开发者通常进行基础检查,以确保生成的 AI 输出不会完全偏离目标。

通过人工反馈不断迭代

人工反馈对于迭代开发至关重要。借助 LangSmith,开发者可以更加高效地收集和整合人工反馈,进而改进和优化应用。在过去的一年里,标注的运行记录数量增加了 18倍,这与 LangSmith 使用量的增长保持一致。

每次运行的反馈量也略有增加,从 2.28条 增长到 2.59条。然而,尽管每次运行的反馈数量有所增加,整体反馈仍然偏少,开发者可能更注重快速审查,或只对最关键的部分进行反馈。

结论

2024年,开发者通过构建多步骤的代理模型应对更高的复杂性,采用更高效的工作流,并通过反馈和评估提高了应用的质量。随着更多 LLM 应用的出现,开发者对更智能的工作流、更高效的性能和更强的可靠性提出了更高的要求。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值