小说大模型:从框架设计到简单案例

今天,仔细查阅了一份关于AIGC(人工智能生成内容)的研报,其中展示了一个令人印象深刻的案例。

大模型在小说领域的应用。

引用一句话: AI对于创作,就像辅助驾驶,但不是自动驾驶。要给作家提供更多辅助工具,帮助作家迸发出更多好创作。

AI当然只能辅助,有血有肉的小说,是需要作家用心去创作的。 AI可以提供灵感和建议,帮助整理结构,甚至生成初稿,但它无法真正理解人类的情感、复杂的社会关系以及深层次的人性。

小说不仅仅是文字的堆砌,更是作家对世界的独特观察、对生活的深刻感悟以及对人性多维度的思考。 只有作家才能赋予角色真实的生命,让故事充满温度与共鸣。 因此,AI只能作为工具,真正的创作灵魂仍需作家来塑造。

一、小说大模型架构

在之前,咱们详细探讨了大模型的应用架构设计。该架构采用了层次化的结构,确保了系统的模块化和可扩展性。 其中,智能体(Agent) 作为整个架构的核心服务层,扮演着至关重要的角色。

智能体不仅负责底层的数据处理、模型推理和决策支持,还为上层的业务逻辑层提供了强大的支撑。 通过这种分层设计,业务逻辑层可以专注于具体的应用场景和用户需求,而无需过多关注底层的技术细节,从而实现了高效、灵活的系统集成与应用开发。

在这样的体系中,顶层的应用程序可以通过标准化接口获取必要的能力,实现高效且灵活的开发与运维流程。

但是,这里是小说大模型架构,针对的是小说的数据训练。可以简单的说是一个小说大模型的垂直微调。

一个数据处理和模型微调训练的流程,分为以下几个层级:

(1)数据层:这是流程的起点,包含原始数据来源,如网文领域和通用领域的数据。

(2)数据清洗:在数据层之上,对原始数据进行处理,包括数据抽样、清洗、去重、过滤等步骤。

(2)模型训练:使用清洗后的数据进行模型的训练,包括不同的模型和训练方法。

(3)模型验证:在模型训练之后,对模型进行验证,确保其性能和准确性。

(4)资源监控:在整个流程中,对资源使用情况进行监控,以优化训练过程。

在数据层,数据清洗层这里都只是做高质量的微调数据,因为高质量的微调数据决定了模型的上限

这种“预训练+微调大模型”的模式具有显著优势,它通过预训练模型将通用语言知识迁移到下游任务,减少了训练时间和数据需求。微调过程能够快速优化模型以适应特定任务,降低部署难度。此外,这种模式具有高可扩展性,方便应用于多种自然语言处理任务。

二、小说垂直大模型训练过程

2.1 基础预训练

基础预训练这里,融入垂直的网文数据。在这个阶段,模型通过基础预训练来学习语言的通用特征和知识。

流程设计】:

  • 基座模型选择:选择合适的预训练模型作为基础,这决定了模型的起点能力。

  • 场景数据选择:根据应用场景选择数据,确保模型学习到与应用相关的特征。

  • 模型预训练:通过数据清洗、配比、指令多样性等方法,提高数据质量,使模型能够学习到更广泛的语言模式。

  • DeepSpeed和Megatron-LM:使用这些技术可以加速训练过程并支持大规模模型的训练。

2.2 深化微调

在基础预训练之后,通过微调来定制模型以适应特定的细分场景。

流程设计】:

  • 微调方法选择:根据任务需求选择合适的微调技术,如Q-LoRA、Flash-Attention等,这些技术可以提高微调的效率和效果。

  • 深化微调:通过更深入的微调,模型可以更好地理解和生成特定场景下的文本。

  • 微调后模型:经过微调的模型能够更准确地响应特定任务。

2.3 模型评估与反馈对齐

评估模型的性能,并通过反馈来优化模型。

流程设计】:

  • 奖励模型训练框架:通过奖励模型来评估模型的输出,这有助于模型学习如何产生更符合预期的响应。

  • 模型评估:通过模型对战平台、风控检查等方法来评估模型的性能。

  • 奖励模型:根据评估结果调整奖励模型,以更好地引导模型学习。

  • 优化后模型:通过反馈和奖励机制,模型能够不断优化,提高性能。

2.4 领域落地与生产环境部署

目的:将模型部署到实际应用中,并确保其在生产环境中的稳定性和效率。

流程设计】:

  • 模型发布:将经过训练和评估的模型发布到生产环境。

  • 应用部署:在实际应用中部署模型,如搜索引擎、生成模型、对话模型等。

  • 负载均衡与反馈收集:确保模型在高负载下稳定运行,同时收集用户反馈以进一步优化模型。

  • 量化加速:通过量化技术提高模型的运行效率,使其更适合在资源受限的环境中运行。

三、Dify的长篇小说案例

对于许多小伙伴来说,获取小说数据并进行清理是一项技术性较强且耗时的工作,而具备基础硬件设备来进行模型的预训练和微调更是难上加难。

但是,即使没有这些资源和能力,大家仍然可以通过Dify的工作流模式来体验长篇小说的生成。

Dify提供了一个简便的界面和流程,让用户无需深入了解复杂的编程或硬件配置,就能轻松生成高质量的小说内容,享受创作的乐趣。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值