在科技飞速发展的当下,我们已然迈入了智能体 AI 时代。随着 Agentforce 的推出,Salesforce 及其客户的业务迈向 AI 赋能未来迎来了关键时刻。如今,AI 浪潮汹涌澎湃,正处于以预测性和生成性 AI 为基石的第三波浪潮之中,这将重塑各个行业,让人类与 AI 的协作达到前所未有的高度,极大地提升工作的生产力、效率、战略决策能力,甚至是整体的工作满意度。
一、AI 智能体的进化:从规则到推理
传统的基于规则的系统,如机器人流程自动化(RPA),虽能执行精确序列任务,但面对任务变化时却力不从心,且需要高昂的技术投入与咨询服务,使得众多组织望而却步。而大型语言模型的出现改变了这一局面,它经过训练,能够理解并生成文本,基于前文生成后续内容。现代平台构建的智能体,如 Agentforce,更是具备理解上下文、适应新情况以及处理广泛任务的能力。
令人振奋的是,未来走向更加引人遐想——由多智能体推理赋能的自适应智能体。这些智能体能够从环境中学习,凭借经验不断改进,不仅能与人类协同,还能与企业客户、合作伙伴、供应商,乃至消费者日益普及的个性化 AI 助手紧密合作。当下,我们仅仅站在企业 AI 智能体三阶段未来的起点。
二、企业 AI 智能体的三个阶段
(一)“单声部”AI——专业贡献者
在智能体进化的初始阶段,专业智能体在特定行业的既定任务中表现卓越,为日常却关键的业务运营带来了前所未有的效率与精准度。以商业领域为例,它们革新了库存与账户管理。智能体不再局限于基本的库存检查,而是能够主动监测多地库存水平,预测季节性需求,实时生成账户摘要,精准捕捉异常模式或潜在商机。曾经耗费数小时人工分析的任务,如今几秒内便能完成,且更为准确深入,为零售客户缔造优化、个性化且近乎“神奇”的体验。
服务运营同样经历着巨变。智能体不仅能进行基本的账单汇总,还可分析客户交互模式,自动分类、优先处理服务请求,并生成关于客户需求的预测性洞察,助力服务团队获取可行动的情报,而非原始数据,让客户服务变得轻松无感。
在金融服务领域,智能体重新定义了客户服务效率。处理争议确认时,它们分析交易历史,识别潜在欺诈活动模式,自动触发相关安全协议;进行财务规划时,关联市场数据、客户历史与宏观经济指标,生成全面分析。合理运用这些智能体,企业将获得空前的后台效率,为消费者带来下一代零售银行、投资指导与财富管理体验。
(二)“多声部”AI——无缝协作者
此阶段开启了同一公司内专业智能体之间的协同合作,为达成共同商业目标携手共进。就如同餐厅总经理协调各方人员冲击米其林星级一样,“协调智能体”统筹多个专业智能体协同工作。
设想一个客户服务场景:一位忠实零售客户提交更换过季商品尺码的请求。一线服务智能体处理初始问询,库存专家核查各地产品库存,物流智能体计算配送选项与时效,计费专家审查账户历史与支付方式,而“协调智能体”将所有这些信息整合成连贯、有效、契合品牌且贴合情境的回复,供负责人审核、完善后分享给客户。
这种多智能体协作方式优势显著:借助专注特定领域的可靠专业智能体,系统可靠性得以增强,同时由于各智能体作用范围较窄,幻觉现象减少;分布式架构将敏感数据处理隔离至特定智能体,安全性得到强化;最为关键的是,该生态系统具备无缝扩展性,组织能够按需持续添加新的专业智能体以拓展能力。
(三)“合奏”AI——企业协调者
最后这个理想阶段,实现了跨组织边界的复杂智能体与智能体(A2A)交互,催生出全新的商业关系模式。除传统 B2B、B2C 模式外,B2A(企业对智能体)乃至 B2A2C 交互崭露头角,AI 智能体成为工作与交易的中间人。
以简单的租车场景为例:客户的个人 AI 智能体与租车公司的商业 AI 智能体展开谈判。客户方智能体追求最优性价比,租车公司方则力求通过附加服务实现收益最大化,同时还要权衡激进销售策略与流失客户的风险。这些交互遵循复杂的“博弈论”原则,要求具备高超的谈判技巧、协议、风险管理能力、验证机制,以及化解冲突的本领。
当拓展至各行业更为复杂的企业流程,如供应链优化、客户体验编排时,“合奏”AI 意味着无论你是消费者还是企业员工,都将拥有助手,依据个人需求与愿望执行复杂编排与有意义的协作。不过,要达成这一愿景,人类仍有诸多工作亟待完成。
三、不可或缺的要素:信任与问责
(一)建立信任
在智能体 AI 时代,信任远超防范毒性、偏差与幻觉的技术保障范畴。Salesforce 近期研究表明,61%的客户认为 AI 发展让可信度愈发关键,事实的确如此。这需要组织对人与 AI 的共生关系建立深度信心,而信心源自四个关键基础。
其一,精准与边界是基石。AI 智能体必须在明确定义的参数内运行,同时确保精准度,如此方能构建可预测、可信的伙伴关系,放大集体智慧。
其二,智能体的自我认知至关重要。如同珍视的同事,AI 智能体需认清自身局限,知晓何时借助人类专业知识,这依赖于精妙的交接协议,保障人工与人工智能的无缝协作。例如,Salesforce 的 AI 研究团队探索训练方法,教导智能体标记不确定区域,遇未知挑战时主动寻求帮助。
其三,多智能体系统需要全球通用的参与协议。正如银行、交通、互联网都有各自全球遵循的规则,未来智能体也需此类协议,以便“协调智能体”能安全、合乎道德且互利地与其他企业智能体沟通、协商与协作,否则将面临智能体间“垃圾信息”泛滥甚至欺诈等风险。
其四,随着 AI 智能体劳动力壮大,安全措施必须同步跟进。恶意之人可能利用 AI 制造“AI 蠕虫”窃取数据或劫持智能体泄露客户隐私,强化保护、隐私控制与持续监测绝非单纯技术要求,而是维系信任的关键,让 AI 从工具转变为企业成长的伙伴。
(二)确保问责
组织部署每秒能做数千决策的 AI 智能体时,必须构建清晰的责任与监督框架,以应对可能出现的问题。这需要全方位策略,以下为企业高管团队监督智能体部署的起点。
明确智能体决策的责任链。AI 智能体做出重大决策时,责任归属必须清晰,甚至可能需设立“AI 运营官”等新角色,赋予其监督部署及问题发生时担责的权力。
建立强大系统,在不完整信息、偏差、幻觉或有害输出影响业务前进行检测与纠正,涵盖持续监测智能体决策、实时干预能力与系统审计追踪,如 Salesforce 研究团队在检索增强生成(RAG)方面的进展,确保 AI 系统输出准确可靠,值得人类与企业信赖。
定义人类监督与干预流程,平衡自主性与控制权。摒弃简单的“人在回路”观念,构建精细框架,明确何时及如何干预智能体决策,打造与智能体沟通的指南与全组织标准方式,以及清晰的升级路径,日常任务最大化智能体自主性,高风险决策保留人类判断核心地位。
制定错误发生时的补救结构化方法,不仅包括技术回滚程序,还涵盖清晰的客户沟通、补救及系统性改进协议,预防类似问题再次出现。
建立全新法律与合规框架,明确应对 AI 智能体问责。当前监管格局并非为自主决策的 AI 智能体设计,企业需与监管机构积极合作,构建适宜治理结构。
四、展望未来:科学方法邂逅企业创新
部署真正交互式 AI 系统之路,需要企业高管高瞻远瞩:将推动 AI 进步的严苛科学标准应用于现实世界实施。成功并非单纯取决于部署的 AI 智能体数量或实施速度,而在于企业领导者与技术人员如何深思熟虑地将其与现有劳动力协议、流程及偏好相融合。
随着我们对智能体协作、共享学习以及人机交互理解的深入,基于可重复研究与实证证据的原则逐渐明晰。凭借 Salesforce 数十年企业客户关系管理(CRM)的成功经验,以及在商业逻辑与优化领域的专业知识,Agentforce 融入了部署策略,确保系统不仅强大,而且在满足客户业务及运营人员需求方面可信、可问责。未来并非人类与 AI 分庭抗礼,而是携手共进,各自发挥独特优势。智能体已然成为——随着 Agentforce 的推出,实际上已然是——真正的劳动力倍增器,助力团队攻克往昔不可能完成的任务。当下,变革正当时,科学方法将照亮前路:通过审慎假设检验、细致测量以及基于证据的持续改进。正如每项突破性实验始于假设,每一次成功的 AI 转型皆源于愿景,终结于经证实的真理。
智能体 AI 时代的大幕已然拉开,我们正站在时代的潮头,见证并参与这场深刻变革,携手智能体迈向充满无限可能的未来。让我们拥抱这个时代,用科技的力量塑造更加美好的明天。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。