AI 产品经理:下一个金领职业 -- 解读吴恩达的前瞻洞见

开篇:把握时代机遇

当 ChatGPT 轰动全球时,很多人在思考 AI 会取代谁的工作。而 DeepLearning.AI 创始人、Coursera 联合创始人 Andrew Ng(吴恩达) 却看到了另一个趋势:AI 将创造一个新的职业黄金赛道。在他最新发布的一封公开信中,这位斯坦福大学教授、全球顶尖的 AI 教育家指出:AI 产品经理将成为未来最受追捧的职业之一。

Writing software, especially prototypes, is becoming cheaper. This will lead to increased demand for people who can decide what to build. AI Product Management has a bright future!

Andrew’s Letters

在当前 AI 技术快速迭代的背景下,这个预测格外引人深思。从 Midjourney 到 GitHub Copilot,从智能客服到 AI 助手,我们正在经历一场前所未有的技术革命。而在这场革命中,真正的挑战已经从"如何实现"转向了"做什么才有价值"。这正是 AI 产品经理需要回答的核心问题。

AI 产品经理将成为稀缺人才

吴恩达用了一个令人印象深刻的类比来解释这个趋势。当福特将汽车的价格降到普通工人可以承受的水平时,整个社会对汽油的需求随之暴涨。这个经典的经济学案例揭示了一个重要原理:当互补品中的一个变得更便宜时,另一个的需求就会上升。

Economics shows that when two goods are complements — such as cars (with internal-combustion engines) and gasoline — falling prices in one leads to higher demand for the other.

在软件行业,我们正在见证类似的转变。AI 技术正在显著降低软件开发的成本和门槛。一个明显的例子是 GitHub Copilot 的出现。这个 AI 编程助手可以实时生成代码建议,将开发者从繁琐的编码工作中解放出来。据统计,使用这类工具可以将日常编码任务的完成时间缩短 30-50%。

但提高效率只是表象,更深层的变化在于,AI 正在重塑整个软件开发流程。传统上,从产品构思到最终实现需要漫长的开发周期。而现在,借助各种 AI 工具和平台,技术实现的周期被大幅压缩。这导致一个有趣的现象:技术不再是主要瓶颈,真正的挑战变成了"我们应该建造什么"。

新时代 AI 产品经理的特点

AI 产品经理的工作本质与传统产品经理有着显著差异。让我们通过一个实际案例来理解这种差异:想象你正在开发一个智能客服系统。

在传统模式下,产品经理需要详细规划每一个对话流程,设计具体的分支逻辑。系统的行为是确定性的,可以精确预测。

而在 AI 驱动的客服系统中,情况完全不同。系统的回复可能因为上下文、用户表述方式的细微差异而产生变化。产品经理需要思考的问题变成了:如何设定合适的对话边界?如何确保 AI 回答既专业又得体?如何收集和利用对话数据来持续优化系统?

这种转变带来了三个关键特征:

- 首先是更高的不确定性,产品行为不再是完全可预测的。

- 其次是更快的迭代节奏,需要持续收集数据、调整模型、优化体验。

- 最后是更复杂的评估体系,不仅要考虑功能完成度,还要关注 AI 表现的准确性、稳定性和安全性。

成为 AI 产品经理需要具备的能力

要成为一名优秀的 AI 产品经理,需要在多个维度建立独特的竞争优势。

AI Product Management requires:

- Technical proficiency in AI

- Iterative development

- Data proficiency

- Skill in managing ambiguity

- Ongoing learning

首要的是技术洞察力。这不是要求产品经理成为 AI 专家,而是要建立对 AI 技术特性的深刻理解。以大语言模型为例,一个 AI 产品经理需要理解模型的基本原理和局限性。知道模型善于处理自然语言理解、文本生成、知识问答等任务,但在数学计算、逻辑推理等方面可能存在偏差。这种理解直接影响产品定位和功能设计的准确性。

数据思维是另一个核心能力。在 AI 产品中,数据不仅是功能的输入,更是产品成功的关键因素。以一个 AI 写作助手为例,产品经理需要思考:如何收集用户的写作风格数据?如何利用这些数据来个性化写作建议?如何在保护用户隐私的前提下优化模型表现?

迭代管理能力在 AI 产品开发中显得尤为重要。传统软件产品通常遵循相对固定的开发周期,而 AI 产品的开发更像是一个持续实验的过程。以 OpenAI 的 ChatGPT 为例,从最初版本到现在的 GPT-4,产品经历了无数次的优化和调整。这要求产品经理具备出色的项目管理能力,能在快速迭代中把控方向,平衡技术可能性和用户需求。

职业发展路径建议

不同背景的人转型 AI 产品经理,需要采取不同的策略。

对传统产品经理而言,最大的挑战是建立对 AI 技术的理解。建议从参与 AI 相关项目开始,逐步积累经验。可以先从产品中的某个 AI 功能模块入手,比如为现有产品添加智能推荐或自动分类功能,在实践中深化对 AI 的理解。

技术人员转型 AI 产品经理则需要重点培养产品思维。许多工程师擅长解决"如何实现"的问题,但对"为什么要实现"的思考还不够深入。建议多参与用户研究,理解用户真实需求,培养从业务价值角度思考问题的能力。

对于刚入行的新人,最佳策略是在传统产品岗位积累基础经验,同时持续关注 AI 技术发展。当你对产品管理的基本框架有了扎实理解后,再逐步向 AI 领域拓展。这样可以避免同时面对产品管理和 AI 技术这两个陡峭的学习曲线。

实践指南

理论学习是必要的,但更重要的是实践。一个有效的学习路径是从小项目开始。比如,你可以尝试设计一个基于 LLM 的垂直领域应用。整个过程包括:需求分析(找到特定场景下的用户痛点)、方案设计(如何利用 AI 能力解决问题)、原型验证(测试 AI 解决方案的效果)、数据策略(如何收集和利用数据改进产品)等环节。

在实践过程中,特别要注意避免一些常见误区。第一个误区是过度依赖 AI。不是所有问题都需要 AI 解决,有时传统方案可能更简单有效。第二个误区是忽视用户体验。AI 的技术能力再强大,如果用户无法轻松理解和使用,产品也难以成功。

社区参与也是学习的重要组成部分。活跃在 AI 产品相关的专业社区中,可以帮助你了解行业最新动态,学习他人的经验教训。值得关注的包括:顶级 AI 实验室的技术博客、产品hunt上的 AI 产品发布、以及各类 AI 产品管理论坛。

未来展望

AI 产品管理领域正处于一个关键的转折点。随着技术的不断成熟,我们正在看到 AI 应用从实验室走向现实生活的加速过程。这个趋势带来了几个重要的发展方向。

首先是专业化分工的深化。目前很多公司的 AI 产品经理还是全栈式的,既要懂产品又要懂技术。但随着行业的发展,我们可能会看到更细致的分工。比如专注于 AI 模型评估与优化的产品经理、负责 AI 交互设计的产品经理、以及侧重于 AI 伦理与治理的产品经理等。

其次是行业应用的纵深发展。当前 AI 应用主要集中在通用领域,如文本生成、图像处理等。未来我们将看到更多垂直领域的深度应用。例如,在医疗领域,AI 产品经理需要深入理解临床工作流程,设计符合医疗规范的 AI 辅助诊断系统;在金融领域,需要考虑风控合规,开发可解释的 AI 决策系统。

第三是 AI 产品管理方法论的成熟。传统产品管理已经形成了相对完善的方法论体系,而 AI 产品管理的最佳实践还在探索中。我们需要建立新的评估框架、开发流程和质量标准,来应对 AI 产品的独特挑战。

结语

Andrew Ng 的预测不仅揭示了一个职业机会,更指出了一个重要趋势:技术的民主化正在改变产品开发的核心挑战。当 AI 让软件开发变得更快更容易时,决定做什么比决定怎么做变得更加重要。

这个转变为产品经理创造了前所未有的机遇。但机遇总是留给有准备的人。成功的 AI 产品经理需要在技术理解、产品思维和商业洞察三个维度都建立扎实的基础。只有将这些能力有机结合,才能在 AI 时代的产品创新中发挥关键作用。

比尔·盖茨曾说:"我们总是高估一年能发生的变化,却低估十年能发生的变化。"放在 AI 领域,这句话可能需要修正:我们既可能低估一年的变化,也可能低估十年的变化。在这个快速演进的领域,最重要的是保持开放和学习的心态,在实践中不断提升自己的能力。

正如 Andrew 所说:"可以创造的有价值的东西几乎是无限的。这是一个绝佳的创造时代!"对于那些准备投身 AI 产品管理的人来说,现在正是最好的时机。技术创新正在创造无数可能,而把这些可能转化为真正的价值,正是 AI 产品经理的使命所在。

The variety of valuable things we can build is nearly unlimited. What a great time to build!

记住,在这个快速发展的领域,最重要的不是你现在掌握了多少,而是你能以多快的速度学习和适应。机遇就在眼前,重要的是迈出第一步,开始你的 AI 产品经理之旅。未来已来,就看你是否准备好拥抱这个充满可能的新时代。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值