多个AI灵活地扮演不同角色,通过设定情景、人物对话、剧情发展等方式,帮助学生在更沉浸式的氛围中学习——假如荆轲知道秦二世而亡还会不会去刺杀秦王?他们两个若在某个空间见面会聊些什么?一个 AI 扮演秦始皇,另一个扮演荆轲,再找一个来总结或者推动剧情发展……
在教育场景中,教学内容最需要精准与可靠。如今的大模型偶尔会出现“AI 幻觉”(Hallucination),导致学生接收到的知识点不准确。如果多模型协作里,有模型扮演“规划者”、另一个是“反思者”,再由“总结者”对答案进行进一步验证和归纳,各模型之间可以相互补充与校验,就能够大大降低误信息流向学生的概率。
这样的技术思路,叫做CoE(Collaboration-of-Experts,专家协同)技术架构,可以让多个模型分工协作、并行作战,执行多步推理,不同模型之间可以相互补充、相互校验,确保面对复杂问题可以有更稳定的输出。CoE 技术架构在中国已经经历了半年的应用,随着 DeepSeek 的加入,彻底成熟。我想未来一旦美国的科技巨头看到,会像今天看见 DeepSeek 一样震惊。
一、从“思维链”到“推理模型”,下一步会是什么?
在 deepseek-r1问世半年以前,周鸿祎就认为, open AI-o1这种推理模型遵循的可能就是思考快与慢那种“双系统理论(Dual Process Theory)”,于是命令团队研究如何让 AI 慢思考。
虽然o1的具体思考过程始终是OpenAI的至高机密(DeepSeek-r1 已经公开),但可以肯定的是,思维链(Chain of Thought, CoT)在其中扮演了重要角色。OpenAI在关于o1的报告中表示,思维链能让模型学会认识并纠正错误,学会将棘手的步骤分解为更简单的步骤,甚至学会尝试不同方法,极大地提高了模型的推理能力。
早在 2024 年2 月谷歌大脑推理团队创建者Denny Zhou,清华姚班校友、斯坦福助理教授、斯隆奖得主马腾宇等人的一篇论文,更是揭开了思维链的无限潜能。
这篇论文证明:即使在没有额外训练数据的情况下,仅通过指令提示模型进行逐步思考(zero-shot CoT prompting),也能显著提高模型的推理能力。这表明CoT的形式本身对于提升模型性能至关重要。
DeepSeek-r1的技术报告让我们知道,推理模型通过强化学习可以自动学习复杂的推理行为,如自我验证和反思。随着训练过程的深入,模型逐步提升了复杂任务的解答能力,并在推理任务上显现突破性的性能提升。也就是说,这些推理模型可以根据任务的难度形成“动态思维链”——过去的AI 聊天机器人需要用户设定“思维链”,推理模型有自己的“思维链”,或者说“推理过程”。
然而,1 月 30 号腾讯 AI 实验室的研究发现,o1 类模型(如:DeepSeek-r1)在处理复杂问题时,尽管能够动态调整推理过程,但频繁的思路切换并不总是带来更高的准确性。模型可能在探索多个无效的推理路径上浪费计算资源,而不是深入探索有潜力的路径。
推理模型很容易过度思考,而有时候,问题没有那么复杂。我就曾经向某品牌的AI推理模型提问:“9.11 和 9.2 谁更大”,AI 经过了长达几页的推理和验证,最后还是答错了。而这道题即使是不懂小数概念的孩子,蒙对的概率也是 50%
下一步会是什么?
二、360 的多模型协作和 CoE 架构
昨天下午用deepseek 时发现它短暂地崩了一小会儿,于是想办法去 360 的纳米 AI 搜索里边去用——现在国内外很多家 AI 公司都部署了 Deepseek 模型,包括但不限于美国的 Perplexity,英伟达、微软、华为云等。但是 360 这次玩出了新意。
请给视频号点点关注,教育学人 AIED 正在筹划直播…
360 推出了一项“多模型协作”功能,可以让 DeepSeek、Kimi、豆包、文心一言等国产 AI 大模型出现在同一个对话框里,分别赋予“规划者”、“反思者”、“总结者”的身份——一个出主意,一个提意见,最后再有一个来总结。这相当于拓展了 AI 的思维链。
在教学场景中,这种协作机制更加贴合真实教学中“多角度评估、分层教学”的做法,能把个性化学习落到实处。当学生完成一套题目之后,可以由“规划者”AI 给出本次评测的整体方向;“反思者”AI 针对学生解答过程中的失误或薄弱点进行详细追问、分析;“总结者”AI 则给出更具针对性的反馈和下一步学习规划建议(比如推荐题库或视频讲解)。
早在 2024 年7月底的ISC大会上,360推出了CoE(Collaboration-of-Experts,专家协同)技术架构,可以让多个模型分工协作、并行作战,执行多步推理,不同模型之间可以相互补充、相互校验,确保面对复杂问题可以有更稳定的输出,解决“AI幻觉”的弊端。这次引入了 Deepseek 等推理模型之后,AI 的多模型协作效果更好了。可以预见,未来CoE会替代MoE成为新趋势,开启多模型协同时代。
同时,由360牵头,百度、腾讯、阿里巴巴、智谱AI、DeepSeek、月之暗面等16家国内主流大模型厂商形成一个联盟,将这些企业的54款大模型产品接入CoE,协同发挥作用。
据悉,CoE技术架构不仅接入了“大模型”,还接入了很多十亿甚至更小参数的专家模型,这使得整个系统更加智能。CoE架构在实现“让最强的模型回答最难的问题”的同时,还能在回答简单问题时调用更精准的“小模型”,在获得高质量回答的同时,节约推理资源、提升响应速度。
三、多模协作在教育场景中的潜力
2022 年底我看到 ChatGPT 发布时想到,用这个东西出题写教案应该不错;最近爆火的 DeepSeek 已经完全可以实现解题和讲题;在未来,多模型协作可以让课堂更加有趣,角色扮演,模拟实验,甚至可以设计课堂剧本——AI灵活地扮演不同角色,通过设定情景、人物对话、剧情发展等方式,帮助学生在更沉浸式的氛围中学习。
下面是几个可能的教学应用思路,供开发者和教育创新实践者参考:
1.历史情景模拟
-
多角色扮演: 假设某个课堂主题是讲解战国末期的历史事件,AI 可以分别扮演秦始皇、荆轲等历史人物,再由“第三方”AI 担任旁白或讲述者,引导学生进入特定的历史场景。
-
改写/假设情节: 比如假设荆轲知道“秦二世而亡”的未来走向,还会不会选择刺杀?学生可以通过与 AI 不断对话,引导角色碰撞出各种假设和推论,探索不同的历史发展可能。
-
反思与总结: 最后,让“总结者”AI 或师生共同回到史实,总结本次角色扮演中出现的关键价值观、历史事件起因、人物性格对历史走向的影响等。
这种学习可以增强历史学习的趣味性、代入感,让学生从不同角度思考历史人物的动机和决策;培养发散思维与批判性思维,也有助于学生对历史的深度理解与记忆。
2. 多模型辅助的深度问答
-
协同出题与解题:一个模型用来生成系列问题或测验题;另一个模型负责解析、解题;第三个模型则从学生视角来检查解题过程是否能够接受,并纠错或补充思路。
-
讲解与脚本化:解题过程可以自动形成一个“解题脚本”或“可视化流程”,供学生在课堂上或课后复习时观看,就像看一段AI老师为你现场“演练”如何思考。
-
自动生成教学案例:多模型协作也能快速给出案例故事或引人入胜的题目背景,为师生提供更多原创素材。
通过分工协作,各模型“各司其职”,解决了单一模型可能出现的盲点或错漏;快速生成并校对多学科、多难度层次的题目,为个性化教学提供更多可能性。
3. 与实验/实践结合
-
模拟实验情境:比如化学课想演示某些化合物反应过程,却限于安全和成本问题无法在课堂上完成,可以让 AI 扮演“实验讲解员”和“实验记录员”,生成模拟实验步骤、材料或对话,让学生直观了解实验过程、观察反应现象。
-
角色驱动的探究学习:在物理或生物等学科,可以设定“探险小分队”角色(由多个 AI 模型分别扮演),他们在虚拟场景里探索某个科学现象,通过边阅读边讨论,为学生呈现不同角度的分析。随后再由教师总结关键的科学原理。
减少实际操作的条件限制,但又保留对实验和探究过程的可视化呈现;借由角色扮演的方式,让学生“身临其境”地学习科学知识,更具真实感。
5. 课堂的延伸:跨学科融合
-
融入多学科知识: 举例而言,一个跨学科主题情景剧可以涵盖历史人物(历史课)、人物的性格与心理动机(心理学/文学课)、所处时代的科技或交通(地理/科技课),甚至涉及一些哲学或伦理思考。
-
在同一个对话里聚合多模型:随着 DeepSeek、Kimi、豆包、文心一言等国产AI不断成熟,不同模型可分别擅长不同学科知识或技能:有人负责历史背景,有人负责文学解读,有人专攻数理分析,还有人专门负责语言润色,最终由“总结者”把所有信息打包成一个课堂输出。
-
加深学生的融会贯通:让学生在一个更大、跨学科的情景下理解知识,也能更好地锻炼整合能力与系统性思维。
从“思维链”到“推理模型”再到“多模型协作”;从“单兵作战”到“单兵带着脑子作战”再到“专家团队作战”;从“写教案”、到“解题”,再到“创意课堂交互”,多模型协作的潜力不再是减少教学负担、快速生成内容,更重要的是它能带来全新的课堂交互方式。通过灵活扮演人物、虚拟实验和情境设计,多模型让教育更具创造性和沉浸感。未来,随着国产 AI 大模型的持续发展与 CoE 技术的成熟,这种“创意课堂+多模型对话”的课堂交互,必将成为教育数字化升级的一大亮点。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。