AI Hedge Fund 简介
AI Hedge Fund[1] 一个概念验证项目,目标是探索人工智能在交易决策中的应用。
该项目通过模拟多种投资策略的智能代理(agents),进行股票分析和交易决策。项目仅用于教育和研究目的,不适用于实际交易或投资。
项目特点
主要特点
- 多策略智能代理:项目包含多种基于著名投资者策略的智能代理,例如:
-
本杰明·格雷厄姆代理:寻找具有安全边际的价值股。
-
比尔·阿克曼代理:激进投资并推动变革。
-
凯西·伍德代理:专注于创新和颠覆性增长投资。
-
沃伦·巴菲特代理:寻找价格合理的优质公司。
-
查理·芒格代理:投资于价格合理的优质企业。
-
估值代理:计算股票内在价值并生成交易信号。
-
市场情绪代理:分析市场情绪并生成交易信号。
-
基本面代理:分析公司基本面并生成交易信号。
-
技术分析代理:分析技术指标并生成交易信号。
-
风险管理器:计算风险指标并设置仓位限制。
-
投资组合管理器:最终决策并生成交易订单。
-
灵活的交易模拟:支持指定股票代码、时间范围进行交易决策模拟。
-
回测功能:提供回测工具,可对特定时间段的历史数据进行分析。
使用场景
该项目适用于以下场景:
-
金融教育与研究:帮助学习者了解AI在金融领域的应用。
-
策略开发与测试:模拟不同投资策略的性能,优化投资组合。
-
市场分析:通过智能代理分析市场情绪、基本面和技术指标。
项目使用
环境搭建
- 克隆项目仓库:
git clone https://github.com/virattt/ai-hedge-fund.git cd ai-hedge-fund
- 安装 Poetry(如果尚未安装):
curl -sSL https://install.python-poetry.org | python3 -
- 安装项目依赖:
poetry install
- 设置环境变量:
- 复制
.env.example
文件为.env
:
cp .env.example .env
-
在
.env
文件中设置以下 API 密钥(至少设置一个): -
OPENAI_API_KEY
:用于运行 OpenAI 提供的语言模型。 -
GROQ_API_KEY
:用于运行 Groq 提供的语言模型。 -
FINANCIAL_DATASETS_API_KEY
:用于获取金融数据。 -
注意:苹果(AAPL)、谷歌(GOOGL)、微软(MSFT)、英伟达(NVDA)和特斯拉(TSLA)的数据无需 API 密钥即可免费使用。
运行项目
运行以下命令启动项目:
poetry run python src/main.py --ticker AAPL,MSFT,NVDA
-
可选参数:
-
--show-reasoning
:打印每个智能代理的决策逻辑。 -
--start-date
和--end-date
:指定决策的时间范围,格式为YYYY-MM-DD
。
运行回测工具
运行以下命令启动回测工具:
poetry run python src/backtester.py --ticker AAPL,MSFT,NVDA
-
可选参数:
-
--start-date
和--end-date
:指定回测的时间范围。
项目结构
ai-hedge-fund/ ├── src/ │ ├── agents/ # 智能代理定义和工作流程 │ │ ├── bill_ackman.py # 比尔·阿克曼代理 │ │ ├── fundamentals.py # 基本面分析代理 │ │ ├── portfolio_manager.py # 投资组合管理代理 │ │ ├── risk_manager.py # 风险管理代理 │ │ ├── sentiment.py # 市场情绪分析代理 │ │ ├── technicals.py # 技术分析代理 │ │ ├── valuation.py # 估值分析代理 │ │ ├── warren_buffett.py # 沃伦·巴菲特代理 │ ├── tools/ # 代理工具 │ │ ├── api.py # API 工具 │ ├── backtester.py # 回测工具 │ ├── main.py # 主入口 ├── pyproject.toml ├── ...
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。