2024年北美放射学年会(RSNA)大会的主题是“Building Intelligent Connections”—构建智能连接。大会主席Langlotz博士表示,人与机器的结合比单独使用任何一种都要好。因此,在AI时代,放射科从业人员必须拥抱AI !!
今天分享一篇由斯坦福大学团队撰写,发表于2025年的《Radiology》有关AI的论文,《放射学中的基础模型:是什么、如何做、为什么及为什么不》(Foundation Models in Radiology: What, How, Why, and Why Not),全面探讨了基础模型(Foundation Models, FMs)在放射学领域的应用、潜力与挑战。一起来看看吧👇
🔍 什么是基础模型(FMs)?
基础模型是AI领域的新宠!它们通过海量无标签数据(如数百万张医学影像+报告)自我学习,无需依赖人工标注,就能处理影像解读、报告生成等复杂任务。
🤔为什么需要基础模型?
1️⃣解决传统AI瓶颈:减少对昂贵标注数据的依赖。提升模型泛化能力,适应多样化的临床场景。
2️⃣临床价值:提高诊断效率,缓解放射科医生短缺压力。通过多模态分析(如影像+基因组数据)挖掘疾病新关联。
👉 核心能力:
1️⃣多模态处理:同时分析CT、MRI、文本报告、电子病历。
2️⃣涌现能力:未经训练也能完成新任务(如未学过的疾病识别)。
3️⃣高效适应:少量标注数据即可微调,适用不同场景。
🚀 基础模型能做什么?
1️⃣智能报告生成:自动将影像转化为易懂的患者版报告,支持多语言翻译。
2️⃣精准诊断辅助:识别肿瘤、骨折等异常,准确率媲美专业模型(如Med-PaLM-M检测肺结核)。
3️⃣工作流优化:自动分诊危急病例,提醒技师调整拍摄参数。
4️⃣疾病预测:从海量数据中发现疾病模式,助力早期干预。
⚙️ 如何训练基础模型?
1️⃣自监督学习:模型从数据本身找规律(如匹配影像与对应报告)。
2️⃣对比学习:让相似数据(同一患者的影像+报告)更接近,差异数据远离。
3️⃣强化学习:根据医生反馈优化模型(如选择更准确的报告版本)。
⚠️ 警惕挑战与风险
1️⃣幻觉生成:模型可能编造看似合理但错误的信息(如虚构病灶)。
2️⃣自动化偏见:过度依赖AI可能导致误诊漏诊。
3️⃣数据偏见:训练数据若缺乏多样性,可能对特定人群(如少数族裔)诊断不准。
4️⃣资源消耗:训练需数千块GPU,成本高且不环保。
🔮 未来展望
1️⃣隐私保护:用联邦学习技术,避免患者数据泄露。
2️⃣持续学习:模型实时更新,适应新疾病与技术。
3️⃣轻量化部署:压缩模型大小,让中小医院也能用上AI。
图1. 放射学中基础模型的概览
图2. 生成式预训练技术示意图
图3. 对比式预训练技术示意图
图4. 基础模型适应临床任务的方法
图5. 基于人类反馈的强化学习(RLHF)在放射学中的应用
图6. 放射学中基础模型的风险与挑战
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。