《构建和评估高级RAG》: RAG评估要素和方法

本文带你了解如下知识:

  • 评估RAG程序的三要素
  • RAG评估的详细流程
  • LLM评估的方式有哪些、
  • 反馈函数的构成和使用

null

RAG评估要素

RAG 的评估围绕 RAG 的三要素展开: 输入上下文输出

形成了三个主要的指标:

  • 问题相关性、
  • 上下文相关性、
  • 事实度(植地性怪怪的,我翻译成事实度,表示结果是否终于上下文和提问)。

null

详细信息参考「数翼」其他文章,这里不做深入。

评估流程

我们提到了 TruLens 的评估流程,今天详细看看。

nullTruLens 如何工作

1. 构建 LLM 程序

第一步当然是构建 LLM 应用程序,也是我们要评估的主体。

应用程序可以你问答程序、AI助手等等,你也可以用你任何喜欢的 API。

2. TruLens 连接 LLM 程序

第二步就是将您的 LLM 应用程序连接到 TruLens,同时记录LLM的输入和响应。

前面已经演示过,这个步骤非常简单。

3. 使用反馈函数评估和记录结果

第三步就是通过针对应用程序的提示和响应运行反馈函数记录结果评估质量

为什么需要反馈函数

衡量 LLM 应用的性能是从开发到生产过程中的关键一步。如果没有先在代表性测试集上衡量其准确性,就不会将传统 ML 系统投入生产。

然而与传统机器学习不同的是,基本事实是稀疏的,而且通常完全不可用。

由于没有基本事实来计算我们的 LLM 应用程序的指标,因此可以使用反馈函数来计算 LLM 应用程序的指标。

什么是反馈函数

反馈函数提供了一种在应用程序运行时生成评估的编程方法,可以衡量应用程序在数据上的表现,以及用户的表现

评估方式

评估可以有多种方式,传统NLP、人工、大模型等等,我们这里使用 LLM。

null评估的方式

反馈函数的结构

下图展示了反馈函数的结构。

null

反馈提供者

反馈提供者是运行给定反馈功能的后端。每个提供程序都提供多个底层模型, 例如 GPT-4 或 Llama-2。在许多情况下(但并非所有情况下), 反馈实现是跨提供程序共享的(例如基于 LLM 的评估)。

4. 创建反馈函数

from trulens_eval import OpenAI as fOpenAI

provider = fOpenAI()

问题相关性反馈函数

from trulens_eval import Feedback

f_qa_relevance = Feedback(
    provider.relevance_with_cot_reasons,
    name="Answer Relevance"
).on_input_output()

上下文相关性反馈函数

使用 TruLlama 获取上下文,

from trulens_eval import TruLlama

context_selection = TruLlama.select_source_nodes().node.text

创建上下文相关性评估函数:

import numpy as np

f_qs_relevance = (
    Feedback(provider.qs_relevance,
             name="Context Relevance")
    .on_input()
    .on(context_selection)
    .aggregate(np.mean)
)

事实度反馈函数

from trulens_eval.feedback import Groundedness

grounded = Groundedness(groundedness_provider=provider)

f_groundedness = (
    Feedback(grounded.groundedness_measure_with_cot_reasons,
             name="Groundedness"
            )
    .on(context_selection)
    .on_output()
    .aggregate(grounded.grounded_statements_aggregator)
)

5. 评估应用程序

使用 TruLlama 创建记录器来连接应用程序,传入前面我们创建的三个反馈函数:

  • f_qa_relevance,
  • f_qs_relevance,
  • f_groundedness
from trulens_eval import TruLlama
from trulens_eval import FeedbackMode

tru_recorder = TruLlama(
    sentence_window_engine,
    app_id="App_1",
    feedbacks=[
        f_qa_relevance,
        f_qs_relevance,
        f_groundedness
    ]
)

从文件获取和手动添加要评估的问题,

eval_questions = []
with open('eval_questions.txt', 'r') as file:
    for line in file:
        # Remove newline character and convert to integer
        item = line.strip()
        eval_questions.append(item)
eval_questions.append("How can I be successful in AI?")

使用查询引擎进行提问,同时使用 TruLens 进行记录,

for question in eval_questions:
    with tru_recorder as recording:
        sentence_window_engine.query(question)

获取评估结果:

records, feedback = tru.get_records_and_feedback(app_ids=[])
records.head()

结果的可读性并不好,

null

使用 Pandas 显示一下,

import pandas as pd

pd.set_option("display.max_colwidth", None)
records[["input", "output"] + feedback]

null

查看第一条记录,

tru.get_leaderboard(app_ids=[])

null

或者运行 Dashboard 查看,

tru.run_dashboard()

从下图可以看到,问题相关性挺高,但是其他两个指标不太好。

null

查看 11 条记录的评估数据:

null

点击任意一条记录查看详细结果,可以根据上下文、输入、输出来进行诊断。

null

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值