在 Docker 中同时安装 Dify 和 RAGFlow 后,可能会遇到以下问题:
一、端口冲突问题
-
现象:Dify 和 RAGFlow 默认使用相同的端口(80 和 443),导致某一服务无法启动。
解决方案: -
-
修改 RAGFlow 的端口映射,例如在
docker-compose.yml
中调整:ports: - "8000:80" # 容器80端口映射到主机8000 - "4333:443" # 容器443端口映射到主机4333
-
重启服务:
docker-compose up -d
。 -
检查防火墙规则,确保新端口(如 8000、4333)开放。
-
二、依赖服务冲突
-
现象:两者均依赖 Redis ,若默认配置相同会导致冲突。
解决方案: -
-
修改 RAGFlow 的 Redis 配置(在
.env
文件中):redis_port=7379 # 修改默认端口 redis_password=自定义密码
-
确保 Dify 的 Redis 配置独立(如使用不同端口或密码)。
-
三、硬件资源不足
-
现象:RAGFlow 对资源要求较高(CPU ≥4核、内存 ≥16GB、磁盘 ≥50GB),资源不足时启动失败或运行卡顿。
解决方案: -
-
检查服务器配置,升级硬件或调整 Docker 资源分配(通过 Docker Desktop 设置 CPU/内存限制)。
-
对 Linux 系统需设置内核参数:
sudo sysctl -w vm.max_map_count=262144 # 临时生效 sudo vim /etc/sysctl.conf # 永久生效
-
四、模型集成配置问题
-
现象:集成本地模型(如 Ollama)时,出现 API 未授权或模型无法加载。
解决方案: -
-
在 RAGFlow 中创建 API Key 并记录知识库 ID。
-
Dify 的
.env
文件中填写 RAGFlow 的 API 地址和 Key:API_ENDPOINT=http://<RAGFlow_IP>:9380/api/v1/dify API_KEY=your_ragflow_api_key
-
关闭 Dify 的 Rerank 模型,优先使用 RAGFlow 的解析结果。
-
五、Docker 环境问题
-
现象(Windows 特有):
-
-
WSL2 未启用:Docker Desktop 无法启动。
解决:以管理员权限运行 PowerShell:dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all wsl --set-default-version 2
-
镜像拉取失败:网络问题导致镜像下载超时。
解决:使用国内镜像源或预封装的一键安装包。
-
六、文件解析与检索效果问题
-
现象:Dify 原生知识库对 PDF 扫描件、表格解析效果差。
解决方案: -
- 通过 RAGFlow 上传文件,利用其深度文档解析能力(支持 OCR、布局识别等)。
- 在 Dify 中关联 RAGFlow 的外部知识库,调整参数如 TopK(检索数量)和 相似度阈值。
启动后验证步骤
-
访问服务:
-
- Dify:
http://:80
- RAGFlow:
http://:8000
(若修改过端口)。
- Dify:
-
日志排查:
docker logs -f ragflow-server # 查看 RAGFlow 日志 docker logs dify-app # 查看 Dify 日志
-
测试知识库:在 Dify 中创建应用并关联 RAGFlow 知识库,验证问答准确性。
总结建议
-
推荐部署方案:
-
- 将 Dify 和 RAGFlow 部署在同一主机,通过内网 IP 通信以减少延迟。
- 使用 RAGFlow 的
docker-compose-gpu.yml
配置以加速处理(如有 GPU)。
-
避坑提示:Windows 用户需优先解决 WSL2 和端口冲突问题;Linux 用户需检查内核参数和资源分配。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。